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Abstract—The problem of pricing for a telecommunication 
network is investigated with respect to the users’ sensitivity to the 
pricing structure. A functional optimization problem is 
formulated, in order to compute price reallocations as functions 
of data collected in real time during the network evolution. No a-
priori knowledge about the users’ utility functions and the traffic 
demands is required, since adaptive reactions to the network 
conditions are sought in real time. To this aim, a neural 
approximation technique is studied to exploit an optimal pricing 
control law, able to counteract traffic changes with a small on-
line computational effort.  

Keywords—Network Pricing, User Sensitivity, Functional 
Optimization, Neural Control 

I. INTRODUCTION

ETWORK pricing is an issue widely treated in the 
literature. In the last decade, a few models have been 

proposed to address the network management through the 
pricing structure [1]. In this paper we pursue the calculation of 
an optimal pricing control law as a function of the Guaranteed 
Performance (GP) and Best Effort (BE) users’ responsiveness 
to the pricing structure, by exploiting data collected in real time 
during the system’s evolution. In the literature, GP and BE 
pricing mechanisms are usually analyzed separately. We shall 
start with an insight into the pricing models related to the two 
traffic types, highlighting their advantages and drawbacks. 
Then, we formulate our pricing scheme to face the envisaged 
problems. 

A. Utility-based pricing and Best Effort services 
The concept of utility function has been introduced in the 

telecommunication literature to depict the Quality of Service
(QoS) as appreciated by the users. It is possible to define the 
utility of a user r as a function of the user’s bandwidth 
assignment rx , namely ( )r rU x . Such function describes how 
sensitive user r is to changes in rx . In the context of pricing, it 
is useful to think of it as the amount of money user r  is willing 
to pay for a certain rx . Let a telecommunication network be 
composed by a set J  of unidirectional links and a set R  of 
users (source-destination (SD) pairs). Link j  has capacity jc ,

( )J r  is the subset of J containing the links traversed by user 
r , ( )R j  is the subset of users traversing link j . Let 

{ , , }jrA j J r R= ∈ ∈A  be the matrix assigning resources to 

users ( 1jrA = if link j  is traversed by user r’s traffic,

0jrA = , otherwise). In such a context, formulated in [2], each 
user accessing the network maximizes his/her utility with 
respect to the assigned price rp , i.e., the bandwidth demand 

rx  is ruled by (1) below ( rm  and rM  denote the lower and 
upper limits of the bandwidth domain, respectively). 

[ , ]
max ( ( ) )        (1)

r r r

r
r r rx m M

U x x p
∈

− ;   
( )

        (2)r
j

j J r
p p

∈
=               

If we interpret jp  as the price per unit bandwidth at link j ,

then rp  is the total price per unit bandwidth for all links in the 
path of user r . We now briefly recall the results of [2, 3] to 
underline the fact that a decentralized implementation of a 
congestion-dependent pricing is available to maximize the so-
called network social welfare, i.e.: 

( )
[ , ]
max

r r r
r rx m M r

U x
∈

;  subject to ⋅ ≤A x c ; ≥x 0             (3)                

when all users react to prices as outlined in (1). ,  ,  A x c  are the 
aggregate vectors of the assigned resources, users’ rates and 
link capacities, respectively. In brief, the key idea is to exploit 
the Lagrangian decomposition of (3), thus giving rise to a flow 
control mechanism of the form [3]: 

                  ' 1( ( )) [ ( ( ))] r
r

Mr r
r r mx p t U p t−= ;   (4)        

( )
( 1) ( ) ( ( ))r

j j j r
r R j

p t p t c x p tη
∈

+ = − ⋅ −    (5)   

( ( ))r
rx p t  represents the solution of (1), 

[ ] min{max{ , }, }b
az z a b= , ' 1

rU −  denotes the inverse of the 
utility function derivative and η  is the gradient step-size. At 
each iteration, user r  individually solves (1) through (4) and 
sets the rate on the respective SD path ( )J r  to ( ( ))r

rx p t .
Each link ( )j J r∈  then updates its price jp  according to (5), 
it communicates the new prices to users ( )r R j∈ , whose 
transmission rate must be changed according to (4), and the 
cycle repeats.  

N
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This mechanism is appropriate for contracts with flexible 
guarantees, related to “elastic” applications. A drawback of 
utility-based pricing mechanisms is related to the Service 
Provider’s (SP) perception of utility functions. Even if some 
works investigate the user responsiveness to the perceived QoS 
and the tariff structure (see e.g., [4]), the notion of utility is 
actually difficult to measure or estimate. Real time traffic 
complicates the situation even more, since it requires QoS 
guarantees, and gives rise to a pricing structure involving the 
corresponding effective bandwidth of the services [1].  

B. Traffic demands and Guaranteed Performance pricing  
In practice, another approach for the optimization of 

network pricing is possible. The user’s responsiveness to the 
tariff structure can be related to the interarrival of the 
connection requests, disregarding any utility-based 
consideration. For each class of service, in which QoS 
requirements are guaranteed on an equivalent bandwidth 
fashion, [5-8] define frequency functions of the service 
requests ( )λ ⋅  with respect to the assigned prices, namely: 

( ) ( )pλ λ⋅ = . In [9], a somehow similar approach is proposed, 
where ( )pλ  is the packet arrival rate of BE traffic as a 
function of the price p . In the presence of multiple ( K )
service classes, let ( )p  be the aggregate vector of the traffic 
laws ( );  1,...p Kκ κλ κ = . Also in this case, the maximization 
of the network performance still remains an open issue, since 
different choices on the prices give rise to different evolutions 
of the system. It is possible to exploit proper mathematical 
instruments for the planning of the telecommunication 
network, but some severe drawbacks still remain unsolved. (i)
The first one is related to the computational burden involved in 
such mathematical tools (Dynamic Programming in [5-7, 9], 
Discrete Mathematical Programming in [8]), which limits their 
application if real time reactions are needed. (ii) The second 
(and most important) one regards the assumption made on the 
perfect knowledge of the traffic laws ( )p . Some knowledge 
on the user’s responsiveness to the pricing structure is 
supposed to be always in effect in [5-9]. If a perfect knowledge 
of users’ utility functions is difficult to assure in a real context, 
the same holds true for the estimate of the functions ( )p  [6, 
7]. (iii) Moreover, as underlined in [7, 8], it is worth noting that 
the optimal price allocation op  can be only obtained through a 
centralized management of the network and, finally, (iv) the 
effect of time-varying bandwidth allocations (typical of BE 
services) is not taken into account if only the traffic laws ( )p
of the GP users are considered.  

C. The present approach 
For these reasons, the study of a novel pricing mechanism, 

able to face the aforementioned drawbacks, reveals to be an 
attractive research topic. In this perspective, the idea of this 
work is to formulate a novel pricing control algorithm, such 
that: (i) it infers the optimal prices as functions of measures 
obtained in real time, without any on-line knowledge of the 
functions ( )p and ( )⋅U  ( ( )⋅U  being the aggregate vector of 
the utility functions); (ii) it reacts on line to non-stationary 

( , )t p  and ( , )t ⋅U ; (iii) it manages both GP and BE traffic, 
multiplexed together and sharing the available resources; (iv) it 
avoids any on-line computational burden; and (v) it is suitable 
for a decentralized control of the network. 

The remainder of the paper is organized as follows. In the 
next Section we define both the network model and the revenue 
maximization problem. In Section III, we formulate our 
functional optimization approach and, in Section IV, a neural 
approximating technique is investigated to solve the problem. 
In Section V we validate our methodology through simulations 
and, in Section VI, we outline conclusions and future work. 

II. NETWORK MODEL AND REVENUE OPTIMIZATION

A. The Guaranteed Performance case 
For the time being, we consider the GP traffic only. With a 

notation that slightly differs from [8], let us consider H  traffic 
routes within a telecommunication network. A route 

{ }1,...,h H∈  is defined as a network path assigned to a group 
of GP users, according to the required source-destination nodes 
and with respect to the chosen routing plan. For each route, K
different QoS treatments are available. A service class is 
identified in terms of assigned route, QoS treatment and 
assigned price hp κ . For instance, in the MPLS terminology, a 
service class is equivalent to the concept of Forwarding 
Equivalent Class (FEC), established on a specific Virtual Path
(VP). The corresponding equivalent bandwidth requests are 
denoted with hy κ  and the corresponding traffic laws with 

( )h hpκ κλ . For instance,  p may be in terms of [€/Mbps per 
minute] and y in [Mbps]. Following [8], a service separation
among the service classes is implemented in each network 
node. This means that a buffer is provided for each class and a 
scheduler is supposed to guarantee a proper bandwidth 
allocation among the classes. By exploiting the traffic laws 

( )p , different network behaviors are possible in terms of 
shared resources and corresponding network performance 
(blocking probability, revenue, welfare, and so on). Such 
performance metrics are manageable by the SP, by 
implementing a proper tariff structure    

{ } [ ]( ) ( ); 1,..., ; 1,..., , 0,ht col p t h H K tκ κ= = = ∈ +∞p ). 
Disregarding, for the time being, any utility-based 
consideration, the first pricing problem is formulated as 
follows. Pricing Allocation Problem (PAP): find the optimal 
tariff assignment [ ]( ),  0,o t t ∈ +∞p , in such a way that the 
long-term average SP’s revenue defined in (6) below is 
maximized: 

( )

1 10

                  ( ) arg  max   [ , ]; 

1[ , ]= lim  ( ) ( ) ( ) 

o

t

T H K

h h hT h

t E L

L n p y d
T κ κ κ

κ
τ τ τ τ

→∞ = =

=

⋅ ⋅

p
p p

p
     (6) 

where ( )hn tκ  is the number of active users of service class hκ
at time t, and  represent a sample path of all stochastic 
variables involved in the generation of 
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[ ]{ }( ), 1,..., , 1,..., , 0,hn t h H K tκ κ= = ∈ +∞ . ( )hn tκ  depends on 
the chosen tariff structure ( )τp  (and corresponding arrival 
rates [ ]( ), 0, tτ τ ∈ ) and on how the service classes have 
shared the available bandwidth under the assigned routing 
paths in the time interval [ ]0, t . For each new GP request, a 
Call Admission Control (CAC) agent is supposed to guarantee 
the network constraints due to the limited bandwidth of the 
links, thus rejecting the incoming call if sufficient resources are 
not available. We include in  all the stochastic variables 
involved in the system, i.e., the aggregate vectors of the arrival 
process of connection requests ( )a , of the call durations ( )d
and of the bandwidth requirements ( )y , which can follow 
complex interactions among the traffic sources through 
statistical multiplexing, i.e., [ ], ,= a d y .

III. A FUNCTIONAL OPTIMIZATION APPROACH

To face the above-described problems, we develop a 
functional optimization approach, by defining pricing 
reallocations as functions of an “information vector”, which 
summarizes the “recent history” of the network. Several 
“inspector agents” are supposed to be disseminated in the 
network and to perform the necessary measurements. More 
specifically, an inspector agent is assigned to each service class 
and monitors its temporal behaviour in real time. Let ( )hκ ⋅m
be the information vector available for the hκ  inspector agent 
with respect to the state of the overall network. Different 
measurable variables may be grouped in the ( )hκ ⋅m  vector, 
depending on the PAP we deal with. For instance, the variables 
of interest for PAP I are the number of GP requests received, 
for each service class, in the last time intervals of observation.  

A distributed structure of Decision Makers (DMs) is 
responsible for the prices’ assignment. A DM is assigned to 
each network node where users submit connection requests. It 
computes new prices’ reallocations for the service classes 
crossing the node. We denote by t̂  a reasonable upper bound 
for the time delay necessary for the DM to obtain stable 
information updates about the ( )hκ ⋅m  vectors from the 
inspector agents. Pricing reallocations are then performed by 
the DMs for each service class hκ  at consecutive time instants 

ˆ,  0,  1,...t kt k= = , on the basis of a “knowledge” collected as: 

        

{ }ˆ ˆ ˆ( ) (( ) ),..., (( 1) )h h hkt col k t k tκ κ κ= − Ξ −I m m

       

(8)

where Ξ  denotes the depth of such finite horizon memory.  

Let us consider the PAP I stated in (6). Let 
ˆ ˆˆ ˆ( ( )) [ ( ), ]kt ktJ kt E L kt=p p  be the average-reward, infinite-

horizon functional cost after the price reallocation at time ˆkt :
ˆ

ˆ
1 1ˆ

1ˆ ˆ[ ( ), ] lim  ( ) ( ) ( ) 
kt T H K

h h hkt T hkt

L kt n p kt y d
T κ κ κ

κ
τ τ τ

+

→∞ = =
= ⋅ ⋅p     (9)                                 

and let ˆ( ( ))h hf ktκ κI  be the “price reallocation law for service 
class hκ ” (i.e., ˆ ˆ( ) ( ( ))h h hp kt f ktκ κ κ= I ). We must note that 
the decision function of the DM assigned to a specific node is 
composed by all the price reallocation laws related to the 
service classes crossing that node. For this reason, we denote 
by ( )⋅f  and ( )⋅I  the DM’s decision function and the related 
information vector, obtained by the composition of the 
information vectors (8) for the all service classes hκ  crossing 
the node. The revenue functional (9) becomes the basis of the 
following functional optimization problem. Problem F-PAP
(Functional - Pricing Allocation Problem): find the optimal 
pricing reallocation function *( )⋅f , such that the following 
functional performance index is maximized:               

ˆ ˆˆ ˆ( ( )) ( ( )),kt ktJ kt E L kt=f I f I            (10). 

IV. THE OPTIMIZATION METHODOLOGY

In order to approximate the optimal pricing control law 
*( )⋅f , we develop a modified version of the Extended Ritz

method [10]. The Extended Ritz method is a technique suitable 
for the approximation of the solution of functional optimization 
problems, by fixing the structure of the decision functions. 
Such decision functions are constrained to take on the structure 
of approximating networks, i.e., linear combinations of (non 
linear) basis functions, containing free parameters to be 
optimized: 

{ }
0

1

0

   ( , ) ( , ) ; 1,..., ;  

,  1,..., ;  ,  1,.., ,  ,  1,...,

i i
l l

l

i i
l l

col c c i H K

l c l c i H K

υ
ζ

υ υ
=

= + = ⋅

= = = = ⋅

f I w I w

w w

     (11) 

where ( , )ζ ⋅ ⋅  and υ  represent a suitable basis function and the 
number of basis functions used to build the approximator 

( , )⋅ ⋅f , respectively. Among the possible choices of structures 
of the form (11), we choose one hidden layer feedforward 
neural networks (due to their powerful approximation 
properties to face the possible exponential growth in the 
number of free parameters, needed to obtain an increasing 
degree of accuracy). We suppose that each price hp κ  is 

constrained to a given domain, i.e. ;h hm M
hp p pκ κ
κ ∈ . In 

order to guarantee the fulfilment of such constraints, we 
compose the output of the neural network with a normalization 
operator ( )⋅n . We thus obtain prices’ reallocations ˆ( )ktp at
any time ˆkt  as: 

[ ]
ˆ ˆ( ) ( ( ), ) ;  ( ) ( ) ;

ˆ              (( ( ), )), 0.0,1.0 , ,                       

h h hm M m
h h h

h h h

kt kt n p p p

f kt h

κ κ κ
κ κ κ

κ κ κ

θ θ

θ θ κ

= = + − ⋅

= ∈ ∀

p n f I w

I w
(12)

We shall call “neural pricing allocation function” (NPAF) the 
aggregation of functions (11), obtained as composition of the 
neural networks and the normalization operators, and denote it 
by ˆ ( ( ), )⋅f I w . It follows that a parametrized cost function is 
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obtained, by substituting the fixed structure of such NPAF into 
cost (10), depending on the parameter vector w , thus leading 
to the following mathematical programming problem. Problem 
F-PAP w: find the optimal parameter vector *w , such that the 
cost function (15) is maximized: 

               ˆ ˆ
ˆ ˆ( ( ), ), ( , )kt ktE L kt E L=f I w w       (13) 

In this way, the F-PAP (11) has been reduced to an 
unconstrained nonlinear programming problem.  

To solve such nonlinear programming problem, we should 
apply a gradient-based algorithm:  

     1
ˆ   ( , ),  0,1,2,...ktE Lχ χ χξ χ+ = − ∇ =ww w w      (14)

where ξ  is a fixed stepsize. However, the explicit computation 
of the expected cost and its gradient is a very hard task, even if 
closed-form formulas for the functional cost ˆ ( )ktL ⋅  were 
available [10]. We choose to compute a realization 

ˆ ( , )ktL χ χ∇w w , instead of the gradient ˆ  ( , )ktE L χ∇w w ,

and we apply the updating algorithm: 
1

ˆ  ( , ),  0,1, 2,...ktLχ χ χ χ
χξ χ+ = − ∇ =ww w w    (15) 

where the index χ  denotes both the steps of the iterative 
procedure and the generation of the χ -th realization of the 
stochastic processes involved in . The components of the 
gradient ˆ ( , )ktL χ χ∇w w  can be obtained by using the 
classical backpropagation equations for the training of neural 
networks. The backpropagation procedure must be initialized 

by means of the quantities , 1,..., ; 1,...,
h

L h H K
p κ

κ∂ = =
∂

 (i.e., 

the gradient ( , )L χ∇ p p ). Unfortunately, in our case, such 
quantities cannot be obtained analytically as in [10], because 
no closed-form of the functional cost ( )L ⋅  is available. Hence, 
during the training phase (15), gradient estimates are computed 
as:   

ˆ ˆ ˆˆ ˆ ˆ( ( ), ) ( ( ), ) ( ( ), )
ˆ( )

hkt kt kt

h p

L kt L kt L kt
p kt

χ χ χ
κ

κ

+∂ −
≅

∂ ∆
p p p

   (16) 

where ˆ( )h ktκ +p  means that a “small” increase is carried out 
for ˆ( )hp ktκ  (the -thhκ component of the price vector ˆ( )ktp ), 
i.e., ˆ ˆ( ) ( )h pp kt p ktκ + = + ∆ .

V. PERFORMANCE EVALUATION AND DISCUSSION 

A. Convergence behaviour of the control algorithm 
A trivial optimal pricing assignment (easily computable 

through simulation comparisons) has to be reached for a small 
network (composed by one link and two service classes). As 
outlined above, a service class is defined as a routing path 
combined with a specific QoS treatment (in terms of equivalent 

bandwidth assignment). The simulation scenario is built as 
follows. Two routes, whose traffic demands are 

1.05( ) 1.0 ;  [1;100];  1,2i i i ip p p iλ −= ⋅ ∈ = , belong to a single 
link of 10.0 Mbps capacity. The corresponding interarrival 
times are exponentially distributed. The aforementioned traffic 
laws are taken from [11] and reproduce the demand elasticity 
of a voice service. The mean duration of the calls is fixed to 
10.0 minutes and is log-normally distributed. A neural network 
with 15 hyperbolic tangent neural units in the hidden layer and 
with a sigmoidal output layer has been used. The information 
vector ( )⋅I  of the NPAF is composed by the numbers of GP 
requests received, for each class of service, in the previous 5 
time intervals of observation (together with the corresponding 
pricing assignments as in (8)). A new interval of observation 
starts every hour and, as a consequence, t̂Ξ  is fixed to 6 hour 
(the first hour of simulation is considered a transient period to 
meet the regime of the stochastic processes). The overall 
simulation time T  in (6) after the price reallocation is set to 15 
hours for each training step. The gradient stepsize χξ of (15) is 

taken as 5
1.0

2.0 10χξ
χ

=
⋅ +

 (thus assuring a decreasing 

behaviour as convergence requirement) and we have also 
added a “momentum” term ( )1 ,  0.3χ χρ ρ−⋅ − =w w , to (15), 
as usually done in training neural networks to speed up 
convergence. The p∆  parameter of the gradient estimation 
procedure (16) was fixed to 6.0. Figs. 1 and 2 show the revenue 
performance and the prices’ assignments during the training 
phase. For the simple network scenario under investigation, the 
lowest price values 1.0;  1,2o

ip i= = (and the corresponding 

frequency of the interarrival requests ( )o o
i i ipλ λ= ) guarantee 

the best performance.  
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Figure 1. Simulation scenario I, revenue during training. 
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Figure 2. Simulation scenario I, prices during training. 
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B. Optimal pricing assignment in a real network scenario 
The second simulation scenario makes use of the ‘COST 

239’ experimental network topology under the voice service 
classes described above and deployed along the routes depicted 
in Fig. 3.  

The capacity of the network links is fixed to 30.0 Mbps. 
The employed neural network structure is the same as the one 
of the previous simulation scenario.  

Route 1: { 0, 1, 4, 8 } ; - - - -   Route 2: { 4, 8, 6 } ; - - - -   Route 3: { 9, 12, 19 } ; - - - - 

Route 4: { 4, 8, 11, 16 } ; - - - -   Route 5: { 9, 12, 14 } ; - - - -   Route 6: { 5, 6, 9 } ; - - - -
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Figure 3. Simulation scenario II, Topology of the test network. 

Both the prices’ domain, the training parameters, the 
simulation horizon T in (6) and the p∆  parameter were 
accurately tuned in order to speed up the convergence of the 

training phase: [ ]1,...,10 ,  ip i∈ ∀ , 4
1.0

6.0 10χξ
χ

=
⋅ +

,

0.3ρ = , T = 1000 hours, p∆ =1.  

The training procedure  converges to the following pricing 
assignment: 

1 2 3

4 5 6

=5.35; =5.65; =3.62;

=3.25; =1.79; =2.21.

o o o

o o o

p p p

p p p
             (17) 

We report in Table 1 the most significant samples obtained 
over the performance index, just to highlight how solution (17) 
guarantees the best bandwidth sharing among the users, 
corresponding to an overall blocking probability of 0.9606%, 
which reveals to be the optimal one (in terms of revenue), as 
compared to the other blocking probability values (obtained in 
correspondence with different price allocations).  

Table 1. Simulation scenario II, Pricing assignments and performance. 

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel control mechanism has been studied 
to allow optimal price reallocations as a function of the state of 
the network.  

Future work includes the application of further constraints 
(e.g., GP blocking probabilities) and analysis of the impact of 
decentralized versus centralized control using the NBAF. 
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Pricing Assignment Revenue Blocking Probability

pi = 100.0, i=1,...,6 4.406673e+006 0.0 

      pi = 25.0,   i=1,...,6 4.647619e+006 0.0 

      pi = 10.0,   i=1,...,6 4.863280e+006 0.0 

      pi = 5.0,   i=1,...,6 5.054878e+006 0.001132 

(17) 5.125e+006 0.009606 

      pi = 4.0,     i=1,...,6 5.087591e+006 0.006751 

      pi = 3.0,     i=1,...,6 4.982476e+006 0.031672 

      pi = 2.0,     i=1,...,6 4.426812e+006 0.136192 

      pi = 1.0,     i=1,...,6 2.889035e+006 0.402790 
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