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Abstract—Indoor localization of targets by using electromag-
netic waves has attracted a lot of attention in the last few years.
Thanks to the wide availability of electromagnetic sources de-
ployed for various applications (e.g., WiFi), nowadays it is possible
to perform this task by using low-cost mobile devices, such as
smartphones. To this end, in order to achieve high positioning
accuracy and reduce the computational resources used in the posi-
tion estimation, fingerprinting approaches are usually employed.
However, in this case, a time-consuming training phase, where a
great number of measurements must be performed, is needed. In
this letter, a novel approach, where the training data are obtained
by means of finite-difference time-domain (FDTD) simulations
of the electromagnetic propagation in the considered scenario, is
presented. The performances of the method are assessed by means
of experimental results in a real scenario.

Index Terms—Electromagnetic propagation, fingerprinting, fi-
nite-difference time-domain method, indoor positioning.

I. INTRODUCTION

L OCALIZATION of objects by using electromagnetic
(EM) waves has attracted a lot of attention in the last

few years. In this framework, approaches based on finger-
prints (FPs) are often employed since they only need the
knowledge of the amplitude of the EM field (which is usu-
ally provided by standard mobile apparatuses) to perform
the estimation of the position of the target [1]. However, the
major problem of fingerprint-based positioning methods is
the exhaustive survey needed to train the system, a task that
requires substantial cost and time [2]. Another important issue
of these systems is that a recalibration is needed every time the
environment changes.
The scientific literature highlights the strong needs of

methods aimed at reducing the time associated to the offline
phase of the FP positioning [3]–[6]. In [3], the need of a method
capable of reducing the heavy burden of the training phase is
indicated as one of the key challenges in fingerprinting. In [4],
it is shown that a valid training phase is hardly bearable since it
requires collecting a huge amount of data. To reduce such data,
it is proposed to trade position error against time, thus reducing
the time needed to train the system [4]. Analogously, it has
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been pointed out in [5] that a large number of received signal
strength (RSS) acquisitions are usually required for calibration
and, typically, several hours are necessary to collect such an
amount of calibration data. For this reason, it has been stated
in [5] that a reduction of the manual effort can be achieved
by minimizing the sampling time at each reference point (RP)
and/or by limiting the number of locations to sample from.
Nevertheless, this simple idea produces inaccurate radio maps,
which decrease the accuracy of the location estimation [5].
Attempts of developing training techniques that try to re-

duce the calibration phase of fingerprint-based systems have
been presented in the literature (see for example [7]–[9]). Some
works also propose to train the system in an opportunistic way
(by using a mobile device such as a smartphone), employing
WiFi scans transparently to the user [10]–[12]. Trainingless ap-
proaches have been proposed as well. They are based on trilat-
eration solutions [13]–[15], which are computationally heavier
and less accurate and reliable than the FP one. In fact, although
trilateration does not require any training phase, it is not able to
provide the same accuracy, in terms of positioning error, since
it does not employ the same amount of information that the FP
ones gather during the training phase.
The main contribution of this letter goes in the direction

of eliminating the field-training phase. In particular, we pro-
pose a WiFi FP indoor positioning system that is trainingless,
meaning that the measurement campaign is replaced by an
offline phase in which the FPs in each point of the area of
interest are estimated by means of EM simulations. In partic-
ular, the FP database is constructed offline by simulating the
EM field produced by wireless access points (APs) inside the
considered scenario by means of the finite-difference time-do-
main (FDTD) method [16]. The computed electric fields are
successively post-processed in order to extract the estimates of
the smartphone’s received signal strengths, which are used to
build the FPs. The combination of these two techniques allows
avoiding the burden of the training phase without significantly
losing the accuracy of the positioning process. Moreover, it is
worth noting that wireless FP localization is often used instead
of the multilateration technique since it provides higher posi-
tioning accuracy [17]. On the other hand, the multilateration
is employed when the applicative environment often changes
and time-consuming training phases cannot be repeated each
time. Essentially, the approach proposed here allows merging
the advantages of the two positioning techniques.
The letter is organized as follows. The proposed approach is

described in Section II and validated in Section III by means of
a set of experimental test on a real environment. Finally, some
conclusions are drawn in Section IV.
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Fig. 1. (a) Traditional and (b) proposed FP architectures.

II. TRAININGLESS FINGERPRINT POSITIONING SYSTEM

This letter proposes a trainingless FP approach. As all the
fingerprint methods, it is divided in two phases: a training phase
(offline) and a positioning phase (online). All the approaches
available in the literature require the mentioned training phase
in which the mobile device (MD) measures and stores the power
of the received EM field generated by the APs that radiates in
the scenario. Operatively, the MD stands still in a set of RPs to
measure the RSS, computes the FP associated to the scanned
point, and stores it in a reference database (DB). Such a process
is iterated until all the RPs have been considered [Fig. 1(a)].
In this letter, such time-consuming training phase is replaced

by a computational approach based on an FDTD algorithm [16],
which provides a map of the field distribution to be used in
order to estimate the RSS values and the corresponding FP in
each RP within the area (successively stored in the DB), thus
avoiding the time-consumingMD’s acquisitions [Fig. 1(b)]. The
online positioning phase remains exactly the same as in standard
training-based approaches (as detailed in Section II-A).

A. FP Approach

In order to describe the algorithm, we first introduce some
notation related to the traditional FP approach present in the
literature. and represent the RP’s and the AP’s number,
respectively. is the number of RSS training values acquired
every seconds. The index , , denotes the generic
RP, which is also identified by its coordinates
defined with respect to a common Cartesian two-dimensional
reference system, while , , is the index of a single
AP. During the offline, or training, phase, a three-dimensional
observation matrix is built. It is composed by rows and
columns; for each pair, thematrix contains a single observa-
tion vector, which includes RSSs training values. In practice,
the element , , , and , is the
single RSS value received from the th AP, sensed at the th
RP during the th signal strength measure. In the training phase
of the FP method, the average of the RSS values of each AP,
measured in each RP, is used to create the FP database. Analyt-
ically, for the th RP, the vector

TABLE I
MD POSITION COMPUTING CRITERIA

is computed and stored, where each element is calculated
as

(1)

For the th RP, the vector corresponds to the RP’s
FP , consequently

. During the online phase, the smartphone ac-
quires the RSS values and computes the observation vector

by averaging the RSS values ac-
quired from each AP. After that, the distance between and
each FP is computed as reported in the following equation:

(2)

where represents the employed norm. In this letter, we fixed
. Iterating the calculation reported in (2) for all the

RPs considered in the positioning process allows obtaining the
vector with . Finally, the
MD’s estimated coordinates of the position are computed
by using different criteria, as summarized in Table I. Among
them, the so-called nearest neighbor (NN) is the simplest and
provides, as MD position, the Cartesian coordinates of the
RP that has the minimum distance . Another simple method
is the K-NN, with , which averages the coordinates of
RPs with the minimum distances. Finally, the K Weighted

Nearest Neighbors, (KW-NN) computes the weighted
average of the coordinates of the RPs with the minimum .
In our work, we have considered two different weights

, with and .

B. FDTD-Based Trainingless Approach

The values of the RSS needed to create the database of FPs
used in (2) are obtained by means of an EM simulator based
on the FDTD method with perfectly matched layer (PML) ab-
sorbing boundary conditions [16]. As it is well known, FDTD
allows to solve Maxwell equations in order to obtain the EM
fields produced by a given source provided that the scenario
is known. In this work, the APs have been modeled by using
simplified sources (i.e., a line-current source when using the
2-D formulation and a vertical-polarized short dipole in the 3-D
case) excited with a unit cosine-modulated Gaussian pulse [16],
i.e.,

(3)

It is worth noting that although the FDTD computation of
large-sized domains is clearly time- and memory-consuming,
this method is nowadays widely used for field computation in-
side rooms and buildings [18], [19]. Moreover, it must be con-
sidered that in the present application the computation must be
performed offline and once for all.
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Fig. 2. Cross section of the considered scenario.

Similarly to the case of indoor WiFi coverage prediction
problems, it is assumed that the RSS is approximately pro-
portional to the electric field intensity [20]–[22], which is
computed by applying an on-the-fly discrete Fourier transform
to the computed time-domain electric field values. Moreover,
in order to remove small-scale fading effects, a local mean
intensity is computed. Several approaches have been pro-
posed in the literature for this task. In this letter, is computed
as [20]–[22]

(4)
where is the size of the averaging window. A similar expres-
sion is used for the 3-D case. Similarly to [23], the computed
electric field is not calibrated, but it could be scaled with re-
spect to the actual data. Due to the approximations introduced in
the propagation modeling, it is difficult to retrieve analytically
the scaling parameter. Consequently, an experimental calibra-
tion process is employed. In particular, the eventually present
scaling factor is computed by minimizing the root mean square
error between a set of calibration measurements and the cor-
responding simulated values [23].

III. NUMERICAL RESULTS

The developed approach has been tested on a real environ-
ment. The considered scenario is an office of dimensions

m containing several pieces of furniture. Two models
have been considered: a 2-D one, in which the investigated area
is supposed to be of infinite extent along the vertical direction
(i.e., a cylindrical symmetry is assumed and the effects of the
floor and the ceiling are neglected), and a more detailed 3-D ge-
ometry. Fig. 2 shows a cross section of the assumed model (it
refers to a height of 1 m for the 3-D case); the colors denote
the different objects of the scenario. The values of the dielec-
tric permittivity and of the electric conductivity used in the
simulations have been chosen according to [24] and are given
in Table II, together with the heights of the various parts com-
posing the scenario in the 3-D case.
Five APs, located in the transverse plane at positions (1.05,

1.35), (1.05, 7.20), (7.50, 7.50), (7.50, 1.00), and (3.90, 3.90) m,
have been considered (represented by dots in Fig. 2). In the 3-D
model, the heights of the APs have been set equal to 2.80 m. The
parameters of the source are GHz, s,

. In the FDTD algorithm, the scenario has been dis-
cretized with uniform square/cubic subdomains of side 0.005

Fig. 3. 2-D FDTD normalized amplitude of the electric field radiated by the
first AP inside the considered scenario.

Fig. 4. Comparison of measured and simulated RSS values along a line parallel
to -axis ( m).

TABLE II
DIELECTRIC PROPERTIES OF THE MATERIALS USED IN THE MODEL

m (2-D case) and 0.03 (3-D case). Concerning the 3-D case, a
coarse discretization has been used in order to reduce the com-
putational time and the memory requirements. In all cases, the
time-steps have been computed by applying the Courant crite-
rion [16]. A layer of 10 cells of PML has been considered. The
duration of the simulation has been set equal to 500 ns. An ex-
ample of the computed distribution of the electric field is shown
in Fig. 3, which reports the normalized square amplitude of the
electric field at the center frequency obtained by FDTD code.
The electric field map has been processed as described in

Section II-B in order to extract the synthetic FPs (an averaging
window of side 2.5 has been used). In particular, 156 RPs,
uniformly distributed on a planar grid with spacing 0.6 m, have
been used. For the 3-D case, a horizontal plane at height
m has been considered. A set of measurements, ran-

domly chosen among the set of available measured data, has
been used to calibrate the simulated data. An example of the
obtained RSS is shown in Fig. 4. Measured data are also pro-
vided for comparison.
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TABLE III
POSITIONING ERRORS FOR TRAINING AND TRAININGLESS STRATEGIES

The obtained databases of FPs are used to estimate the po-
sitions of targets uniformly distributed inside the sce-
nario, and the mean positioning errors have been computed by
using the measured and computed FP databases with the dif-
ferent algorithms described in Section II-A. The obtained results
are summarized in Table III. As expected, because of the ap-
proximations introduced in the model of the scenario, the mean
positioning errors obtained in the 2-D and 3-D cases are slightly
higher than those obtained with the smartphone measurements.
Moreover, the 3-D FDTD algorithm provides lower errors since
it allows a better modeling of furniture (especially the partition
wall). It is worth noting that, although in the trainingless strategy
the errors are higher than those obtained by using the measured
FP database, they are still comparable to those available in the
literature. Moreover, the decrease in performance is compen-
sated by the gain in terms of training time. Finally, the variation
in accuracy due to an inexact knowledge of the scenario has
been preliminarily evaluated. To this end, 10 training databases
have been generated by using different wall properties (ran-
domly chosen in the ranges and S/m). By
using a 2-D model and the KW-NN strategy with , the
estimated positioning error (averaged on the 10 cases) is 2.29 m,
whereas the standard deviation is 0.04 m. Similar results have
been obtained by using the other strategies. As can be seen, at
least in this case, the approach seems to be quite robust to vari-
ations in the scenario used in the training stage.

IV. CONCLUSION

In this letter, a traininglessWiFi FP indoor positioning system
has been proposed. In the developed approach, the experimental
measurement campaign needed to train the positioning algo-
rithm is avoided. The FP database is built offline by computing
the EM field produced by the access points in the considered
scenario with an FDTD algorithm. The developed strategy has
been tested in a real scenario, and the results have been com-
pared to those provided by a standard training procedure, with
comparable positioning errors. Further investigations will be de-
voted to a more extensive analysis of the performances in dif-
ferent scenarios.
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