
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 5, SEPTEMBER 2005 1195

Neural Approximation of Open-Loop Feedback Rate
Control in Satellite Networks

Marco Baglietto, Member, IEEE, Franco Davoli, Senior Member, IEEE, Mario Marchese, Senior Member, IEEE, and
Maurizio Mongelli, Student Member, IEEE

Abstract—A resource allocation problem for a satellite network
is considered, where variations of fading conditions are added to
those of traffic load. Since the capacity of the system is finite and
divided in finite discrete portions, the resource allocation problem
reveals to be a discrete stochastic programming one, which is typ-
ically NP-Hard. In practice, a good approximation of the optimal
solution could be obtained through the adoption of a closed-form
expression of the performance measure in steady-state conditions.
Once we have summarized the drawbacks of such optimization
strategy, we address two novel optimization approaches. The first
one derives from Gokbayrak and Cassandras and is based on the
minimization over the discrete constraint set using an estimate of
the gradient, obtained through a “relaxed continuous extension” of
the performance measure. The computation of the gradient estima-
tion is based on infinitesimal perturbation analysis (IPA). Neither
closed forms of the performance measures, nor additional feed-
backs concerning the state of the system and very mild assump-
tions about the stochastic environment are requested. The second
one is the main contribution of the present work, and is based
on an open-loop feedback control (OLFC) strategy, aimed at pro-
viding optimal reallocation strategies as functions of the state of
the network. The optimization approach leads us to a functional
optimization problem, and we investigate the adoption of a neural
network-based technique, in order to approximate its solution. As
is shown in the simulation results, we obtain near-optimal reallo-
cation strategies with a small real time computational effort and
avoid the suboptimal transient periods introduced by the IPA gra-
dient descent algorithm.

Index Terms—Functional optimization, neural networks, re-
source allocation, satellite networks, sensitivity estimation.

I. INTRODUCTION

A. Optimization Problems in Telecommunication Networks

I N computer networks extending over large geographical
areas and in multiservice packet switching communica-

tion networks, in the presence of limited resources (buffers,
bandwidth, or processing capacity), several forms of control
are exerted to maintain a desired level of performance for all
users and traffic types. The technology evolution and the users’
needs have brought to study and implement algorithms and
mechanisms able to provide quality of service (QoS) in the
Internet [3]. Heuristics often help finding efficient and simple
solutions, but the strong market competition often requires
more optimized performance.

Several optimization problems in telecommunication net-
works have a discrete stochastic programming nature. We
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disregard, for the time being, the system’s dynamics and
consider a general resource allocation environment in which
some stochastic variables influence the system’s evolution.
Decision variables (denoted by ) are encountered in the form
of nonnegative integers, which must be modified along time
as parameters of the control policies, in order to optimize the
system performance. Mathematically speaking, the aim of any
network manager is to look for the best resource allocation
so that

(1)

where the system performance can be expressed according
to specific metrics , such as blocking probability of
connection requests, packet loss probability, packets’ mean
delay or delay jitter, Service Provider’s revenue [4]–[14]. The
expectation in (1) is over all the feasible sample paths (i.e.,
the realizations of the stochastic processes) of the system.
Such optimization problems fall in the well-known area of
the so-called stochastic discrete resource allocation problems
(SDRAPs). This class of problems is NP-hard [15], even if
no stochastic variables affect the system’s dynamics. In the
presence of a stochastic environment, when no closed-form
expression of is possible, the topical problem reveals to
be the estimation of . This generally leads to brute
force offline simulations or direct measurements made on the
system.

In the context of telecommunication networks, such problems
are sometimes solved by means of centralized approaches, in
which the control systems are based on closed–form expressions
for the performance measure (see, for example, [8]–[11], [14],
[16] for what concerns Call Admission and bandwidth Con-
trol, routing and pricing issues). For instance, in [5], [10], and
[16], the Tsybakov-Georganas formula for the packet loss prob-
ability in the presence of self-similar traffic [17] is used. In [11]
and [14], the blocking probability of call requests is computed
through the well-known Erlang B formula.

The main drawback of these approaches is due to the fact
that conditions for the applicability of closed-form functional
costs are difficult to implement in real-life contexts. Actually,
such approaches act according to a parameter adaptive certainty
equivalent control [18]. A mapping between the current statis-
tical behavior of the system and the parameters of the functional
costs must be periodically performed online, in order to main-
tain good performance of the resource allocation algorithms. In
the presence of self-similar traffic, closed forms for important
performance measures (e.g., mean delay and delay jitter of the
packets) are not always available; but “ even under Mar-
kovian assumptions for processes of queuing systems, there are
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only limited cases where closed-form expressions can be ob-
tained” [19], and, in general, it is very difficult to assure that
in a real application scenario some strict hypotheses are veri-
fied. Moreover, most of these techniques rely on the applica-
tion of dynamic programming algorithms, whose online imple-
mentation in a real context may be quite impractical, due to the
well-known curse of dimensionality.

B. Need of Sensitivity Estimation Algorithms

The application of algorithms, able to estimate the sensitivity
of the performance measure, could help in providing “good”
control decisions without the adoption of closed-form func-
tional costs and the application of computationally expensive
algorithms.

Sensitivity estimation algorithms are based on perturbation
analysis (PA). PA relies on the observation of the sample paths
followed by the stochastic processes of discrete event systems
(DESes) and gives an estimation of the derivative of the perfor-
mance index [19]–[22], thus, allowing the application of a gra-
dient-based algorithm to optimize the resource allocation [6],
[22]–[24]. The related optimization techniques are known in the
literature as online surrogate optimization methodologies, be-
cause they act online, with a gradient-based algorithm, by ap-
plying a “surrogate” relaxation of the discrete functional cost
[1], [2].

For the purpose of the present work, we recall the results
of [24] to highlight how an online surrogate methodology is
able to improve the performance over a control strategy based
on a closed-form expression of the performance index. As a
main drawback, online surrogate methodologies do not have any
guarantee concerning the time needed to reach the optimal re-
source allocation. They lead to control decisions characterized
by suboptimal transient periods, in which the DES reaches sub-
optimal performance. If the stochastic processes are stationary,
at least in wide sense (i.e., their moments are fixed during the
temporal evolution of the system), the transient periods can be
properly reduced, by means of a proper tuning of the gradient
stepsize. Nevertheless, since, in practice, it is difficult to assure a
stationary behavior of the stochastic processes, dynamic control
reactions, able to quickly converge to the optimal reallocation,
must be investigated.

C. Functional Optimization Approach

The aforementioned criticism about pure gradient-based al-
gorithms leads us to the principles of the theory of optimal con-
trol, which give instruments for the choice of control variables
as functions of the state of the system. In doing so, however, the
dynamic evolution of the system over time must be described
explicitly, and we are no longer facing a parametric optimiza-
tion problem of resource allocation, but rather a dynamic con-
trol problem, where the decision variables are functions of infor-
mation acquired in successive instants. Nevertheless, the theory
of optimal control can reveal more than one obstacle in facing
such a dynamic stochastic discrete resource allocation problem
(D-SDRAP).

Almost all of the optimal control techniques in the literature
make use of closed-form expressions of the system equations of
the controlled dynamic system and of the cost functional. In [25]

and [26], an optimization technique is presented to solve con-
tinuous functional optimization problems to obtain approximate
solutions at any degree of accuracy. Such a method, called the
Extended Ritz method, consists in assigning a fixed structure to
the control functions, where a fixed number of parameters have
to be optimized. By exploiting the approximating properties of
neural networks [27], it is possible to face the curse of dimen-
sionality in the approximating structure of the control strategies
with respect to the dimension of the state–space. The LQG as-
sumptions (i.e., the controlled dynamic system and the obser-
vation channels on the system state being linear, the cost func-
tion to be minimized being quadratic, and the stochastic vari-
ables being Gaussian) are not necessary. In [28], this method-
ology was applied to decentralized routing in packet switched
networks. The technique is able to compute off line near-optimal
control strategies, relaxing the necessity of heavy online com-
putational efforts. However, such optimization technique cannot
manage control variables that lie on a discrete constraint set and
needs analytical expressions for the dynamic equations of the
controlled system and for the functional cost.

In this paper, we take a somewhat simpler approach, which is
based on an open-loop feedback strategy [18]. More specifically,
we consider a D-SDRAP consisting in the minimization, at each
time instant , of a cost of the type

(2)

where we have explicitly indicated the dependence on time of
the decision parameter and of the stochastic environment, and

represents the “instantaneous” performance measure.
We state the problem in the satellite environment and face it
by means of a functional optimization approach, where the
system dynamic equations are not required explicitly. Hence,
we modify the optimization methodology proposed in [25] and
[26], in order to solve such functional optimization problem.

In this perspective, the major concern is to adapt the related
training algorithm to a discrete event simulation-based envi-
ronment, in which only estimates of the functional cost and of
its gradient can be obtained. This can be done by exploiting
the principle of PA and applying the infinitesimal perturbation
analysis (IPA) proposed in [21] and [22] to the solution of our
problem. Finally, we shall show how our approach guarantees
better performance with respect to the corresponding online sur-
rogate methodology.

Considering the resource allocation in the context of broad-
band satellite networks makes the optimization even more dif-
ficult with respect to a terrestrial environment, because channel
degradation effects must be taken into account, together with
the traffic changes. As will be clear from the following, how-
ever, the proposed model can be generalized for other applica-
tion scenarios and functional costs.

The remainder of paper is organized as follows. In the next
section, we formulate the D-SDRAP arising in a satellite envi-
ronment; then, in Section III, we briefly describe the certainty
equivalent approach adopted to solve it in [5] and [10], and
in Section IV we show a possible alternative solution with an
online surrogate optimization methodology. In Section V, we
formulate the solution of the D-SDRAP with our open-loop
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feedback control (OLFC) strategy and approximate it through a
proper neural network-based technique. In Section VI, we com-
pare such optimization strategies according to different simula-
tion scenarios, showing the capability of the OLFC to achieve
the best performance. Finally, conclusions and future work are
outlined in Section VII.

II. DYNAMIC STOCHASTIC DISCRETE RESOURCE ALLOCATION

PROBLEM IN A SATELLITE SYSTEM

A. State of the Art

Satellite systems (Low Earth Orbit, Medium Earth Orbit, and
Geostationary satellites) have been proposed to support world-
wide multimedia and interactive services. Many research issues
are currently under investigation to improve the performance of
multimedia satellite systems: integrated satellite architectures,
beam scheduling, on board signal generation, adaptive modu-
lation and coding, multiple access, flow control, and resource
allocation [29].

In such systems a major concern is related to variable fading
conditions over the channel that can heavily affect the transmis-
sion quality, especially when working in Ka band, where the
effect of rain over the quality of transmission is more signifi-
cant [10], [29].

In the literature, it is possible to find optimal policies devel-
oped in the case of a finite quantity of transmission energy for
satellite network devices. [30], [31] show a dynamic program-
ming formulation of the problem that leads, for special cases,
to a closed-form optimal policy, in order to find a tradeoff be-
tween the minimization of the energy required to send a fixed
amount of data and the maximization of the throughput over
a fading channel. Power allocation for fading multiuser broad-
cast channels is a popular topic also in information theory [32].
Error recovery techniques, such as automatic retransmission re-
quest (ARQ) and forward error correction (FEC), are employed
in wireless environments to face adverse channel conditions.
Usually ARQ is not adopted in the presence of real-time traffic
with stringent latency constraints. FEC mechanisms allow re-
covering erroneous packets, despite channel degradation, but,
owing to their overhead, they may cause further congestion,
thus, increasing the packet loss probability. A tradeoff must be
found out between the resource allocation and the FEC redun-
dancy.

In the aforementioned works, the problem is analyzed and
solved at the physical layer: power allocation is performed, in
order to obtain good reactions to variable fading conditions. In
[5], [10], and [24] and in this work, a FEC mechanism is located
at the physical layer and adaptive bandwidth allocation strate-
gies are provided at the data link (or upper) layers to minimize
the loss probability of the overall system.

Resource management schemes are often considered for
satellite systems with respect to the call admission control
(CAC) issue [29]. The satellite system is managed at the call
level, adopting CAC techniques with dynamic reactions per-
formed by the resource management agent, to face variable
system condition. In this work, we investigate bandwidth allo-
cation strategies disregarding the CAC problem and account for
the effect of variable traffic and fading level conditions, by con-
sidering the network at the packet level. In this perspective, two

novel optimization algorithms are investigated to counteract
variable fading and traffic load. Stochastic processes are as-
sumed to be nonstationary. The optimization algorithms we are
going to investigate have to dynamically adjust the bandwidth
allocation, by following adaptively the current behavior of the
stochastic processes and optimally distributing the available
channel capacity among the satellite stations.

B. Model of the Satellite Network

The satellite environment under investigation consists of a
fully meshed satellite network that uses bent-pipe geostationary
satellite channels, joining stations. This means that the satel-
lite only performs the function of a repeater, without onboard
processing of data. The system operates in multifrequency-time
division multiple access (MF-TDMA) mode, which allows us
to divide the system capacity into a number of channels, so
that the traffic stations can be downsized with respect to a pure
TDMA system. TDMA allows the transmission of digital data
streams from many sources sequentially assigned to different
time slots. Each earth station has to know when to transmit and
it must be able to recover the carrier and the clock for each re-
ceived burst in time to sort out all wanted channels; this can be
accomplished through preambles at the beginning of each burst.
The integer represents the number of available bandwidth
units, where a unit consists of the smallest quantity of band-
width assignable to a station. TDMA is easy to reconfigure for
changing traffic demands and is robust with respect to noise and
interference. In particular, for satellite systems, it maximizes the
downlink Carrier/Noise Power ratio.

We further suppose that the stations generate IP packets,
which, in turn, are divided at the data link layer for transmission
on the satellite channel into smaller, fixed size data units. The
latter may typically be asynchronous transfer mode (ATM) or
digital video broadcasting (DVB) cells.

A master station is supposed to maintain the system synchro-
nization and is responsible for the capacity allocation to the
traffic stations. The master station performance is the same as
the slave stations’ one; thus, the role of master can be assumed
by any station in the system.

This assures that the master operates in clear sky conditions
for almost all of the time, because when the current master’s
attenuation exceeds a given threshold, its role is assumed by an-
other station that is in good conditions. In other settings, the
satellite itself could be responsible of the allocation: in this case,
it should be equipped with an onboard processing unit, in order
to receive information periodically from the stations and calcu-
late the next bandwidth allocation.

With a notation that slightly differs from [21], each station
is assumed to have a finite-capacity buffer of fixed size

and a single server. Fig. 1 illustrates the main components of
a fluid model of the earth station.

The buffer receives variable bit rate (VBR) traffic from dif-
ferent sources. The stochastic processes associated with our op-
timization problem are the following:

• : the input flow (inflow) rate process at the th station;
• : the buffer workload process, namely, the fluid

volume in the th buffer;
• : the service capacity of the buffer at station ;
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Fig. 1. Model of the ith satellite station.

• : the output flow rate; if the buffer is not
empty, otherwise: if

if ;
• : the loss rate (overflow) process due to a full buffer.

C. Traffic Model

Even if the optimization techniques we are going to formu-
late are not related to a specific behavior of the traffic sources,
we shall adopt a specific traffic model in order to specify a
closed-form functional cost of the performance index for the
purpose of performance comparison. Hence, we now introduce
the traffic model adopted for each station’s inflow process

.
In the recent years, packet-based traffic has been demon-

strated to show statistical characteristics very close to “self-sim-
ilar” processes [33]. We suppose that each inflow process

, is composed by a self-similar stochastic
process, due to the aggregation of some VBR sources. For each
station , the statistical parameters that describe such process
are: the peak bit rate of the on-off sources and the burst
arrival rate of the aggregated flow,
namely, the average number of bursts “seen” by station . We
denote by and the mean time durations of the burst and the
silence periods, respectively. They are both Pareto distributed.
It is shown in [17] that the aggregation of independent
sources with such probability distribution over determines
an aggregated flow with self-similar properties. This has a
dramatic impact over the resources that must be reserved to
such flow in order to guarantee packet-level QoS constraints
[13], [17]. is the maximum number of on-off sources in the
flow .

D. Performance Measure

We take the minimization of the loss volume as the final goal
to pursue. However, the generality of the proposed technique
would allow us to address also other network metrics. The loss
volume for each station is given by

(3)

where is the vector of the service
capacities allocated to each station at time . (From here on,
we shall use the superscript in order to stress that a quantity
belongs to a “discrete” set).

It is worth noting that the cost in the form (3) is fairly general
and far more complex that that expressed inside the expecta-
tion in (2). Indeed, its minimization with respect to would

imply finding an infinite sequence of decision vectors. Its so-
lution requires suitable approximations that will lead us to the
form of (2).

As to , we have

MAU

(4)

namely, the allocated service rate for each station is a discrete
number of minimum allocation units (MAUs), i.e., the smallest
portion of bandwidth that can be assigned to a station. As men-
tioned previously, is the maximum number of MAUs avail-
able for the system.

The total loss volume of the overall system becomes the sum
of the contributions of each station

(5)

where is the aggregate vector of
the inflow processes.

E. Fading Effect and Problem Formulation

The effect of fading is modeled as a reduction in the band-
width actually “seen” by a traffic station. The fading effect is
represented by a variable , which shows how the bandwidth

is reduced [5], [10]. For each station , at time , the “real”
is

(6)

In our model, the fading effect involves a reduction of the
bandwidth actually “seen” by the station, or, equivalently, an in-
crease in the bandwidth required by the traffic sources to main-
tain the same bit error rate (BER). We suppose the presence of
fade countermeasures located at the physical layer, totally man-
aged by the earth station. They are expected to provide the de-
sired BER through FEC codes [4], [5], [10], [29]. Whenever the
fading effect causes errors over the packets, an adaptive control
can monitor the carrier/noise power (C/N) ratio and, on the basis
of this measure, increase the redundancy of the packets sent in-
troduced by the FEC. In this way, for each station, the available
bandwidth is reduced: since more bits are necessary to transmit a
single packet (because of FEC coding), the outflow cell rate can
be considered as modified by the fading effect. Clearly, heavier
fading conditions will involve a more consistent decrease of the
allocated bandwidth, because more coding protection of data
will be necessary, and vice versa.

So, we are going to discuss the combination of a BER-re-
lated fade countermeasure technique with a resource allocation
problem, where a master control station is responsible of the
bandwidth reallocations.

The optimization problem can now be stated. It consists
of finding the optimal sequence of bandwidth allocations
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, so that the overall loss volume of the system is
minimized.

Problem dynamic-stochastic resource allocation problem
(D-SDRAP): Find such that the cost
function

(7)

is minimized.We denote by is the generic sample path
for station , namely, a realization of the stochastic pro-
cesses characterizing the temporal evolution of station

. In the following, we
denote by the aggregate vector
of the fading processes and by a single realization of
over all . Similar definitions hold for and .

As mentioned in the introduction, the expectation
is over all the feasible sample paths

for each station .

III. CERTAINTY EQUIVALENT OPTIMIZATION APPROACH

Also in the presence of a self-similar behavior of the traffic
sources, it is possible to obtain analytical models for the com-
putation of the loss probability performance [17]. Such closed-
form expressions could be used in the aforementioned resource
allocation framework in order to optimize the resource alloca-
tion [5], [10]. Anyway, they need to assume a perfect knowledge
of the system’s state and a strong consumption of computing
power, due to the continuous online minimization of a global
cost through the adoption of a proper dynamic programming al-
gorithm.

A. Closed-Form Formula for the Loss Probability

We now describe in some detail such optimization strategy.
Following the model employed in [5], [10], and [16], we adopt
the Tsybakov-Georganas formula, reported in (8), shown at the
bottom of the page, for the packet loss probability Loss of
each station , given a static allocation that is supposed to
last indefinitely.

The parameter is the average burst length and and
are the shape and the normalization parameters, respectively, of
a discrete Pareto distribution over the burst length. The other
notation is explained in the following.

Let be a reference time interval (slot), to which we shall
refer all the relevant parameters of the cell queue of each station
. The slot also represents the minimum duration of a burst, and

the burst length is expressed as an integer number of slots. Let
be the peak generation rate [bits/s] of each source, supposed

for simplicity, and without loss of generality, to be equal for each
transmitting station, and let be the number of bits in a cell.
Then, is the number of cells generated by

an active burst in a slot ( being the smallest integer greater
than or equal to ). Suppose that the number of new sources
becoming active in each slot is i.i.d. Poissonian (which is true for
the model of Section II, asymptotically in the number of sources
[17]), with parameter . If is the cell’s header
length in bits, then represents
the bandwidth , assigned to station and degraded according
to the current value of fading coefficient , expressed in cells
per slot ( being the largest integer less than or equal to ).

Equation (8) computes the steady-state loss probability of the
th station, resulting from a stationary configuration of the in-

flow rate process, i.e., when the input bit rate of buffer fol-
lows a stationary random process producing, on average, a fixed
value of the parameter. In this perspective, the closed
form resembles the static functional cost (1) and allows imple-
menting a parameter adaptive certainty equivalent (PACE) con-
trol. It consists of mapping the current behavior of the sources
to the parameters of (8) and periodically performing the ser-
vice rates reallocations. Actually, it is necessary to counteract
both time varying , and fading values. The
stochastic environment under investigation is therefore not sta-
tionary. Real time adjustments of (8) are needed. As a result,
the mentioned mapping is mandatory to update the PACE con-
trol with respect to the current state of the network. That means
the state is perfectly known in real time or, in practice, a traffic
estimator should be employed to capture the behavior of the
sources.

The PACE control acts as follows. The optimization problem
formulated in (7) is approximated by a sequence of fi-
nite-horizon OLFC problems, where stationarity in the loss
probability distribution is supposed to be reached in each in-
terval, in order to apply (8). The minimization of the overall loss
probability is therefore stated at the time instants ,
where a new bandwidth reallocation is performed

(9)

Loss (10)

The index denotes the reallocation time instants at which a
new solution of (9) is computed, according to the current state
of the network (in terms of traffic load and fading levels). We
must note that the self-similar assumption holds asymptotically
in the number of sources [17] and that (8) holds asymptotically
in . In practice, the number of sources is finite and, as a con-
sequence, the bandwidth needs are not exactly predicted by the
PACE approach [24].

B. Online Computational Effort

An efficient computational algorithm to solve problem (9)
can be based on Dynamic Programming over the stations [34].
This is polynomial in the number of stations and in the total

Loss
if

otherwise
(8)
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number of MAUs and has complexity being the
maximum number of available MAUs. Hence, its computational
burden seems to be not so heavy as expected. Unfortunately,
may be very large in the presence of a high capacity link and
with the adoption of small MAUs (from 100 kb/s down to lower
values). So, if also the number of active stations is high, such op-
timization procedure might need a huge computational time to
terminate successfully. This drawback can severely degrade its
performance. Since the adoption of high values for the MAUs
is not recommendable (as it leads to poor performance of the
optimization algorithm, too), if the dynamic programming al-
gorithm has to be employed, a proper tradeoff must be found
out in order to limit its computational burden.

In the following, we shall denote the application of this tech-
nique as closed-form functional cost with dynamic program-
ming (CF&DP).

It is worth noting that the optimization algorithms proposed in
Sections IV and V will reveal to be computationally lighter than
the CF&DP technique. Nevertheless, we do not insist on their
suitability due to the involved lower computational complexity,
but we highlight how they are capable to outperform the CF&DP
approach in terms of performance.

IV. ONLINE SURROGATE OPTIMIZATION ALGORITHM

In this section, we summarize the online surrogate optimiza-
tion technique, taken from [1] and [2], and detail its application
to our problem.

In order to generate a gradient descent of bandwidth real-
locations, a derivative estimation of the performance index is
needed. We employ a derivative estimation technique that as-
sumes mild a-priori hypotheses concerning the stochastic pro-
cesses involved in the system.

A. Performance Derivative Estimation

Since our purpose is to obtain a gradient estimate of the per-
formance metric with respect to the service rate , we
apply IPA [21], [22]. It consists in finding queuing systems per-
formance derivative estimators at the packet level. The topical
problem is that such derivatives are unknown, even for basic
queuing systems (see, e.g., [19] for an overview concerning the
principles of PA). Only estimators can be provided. They are
derived as functions of the sample paths of the system. “The
form of the IPA estimators is obtained by analyzing the system
as a Stochastic Fluid Model, but the associated values are based
on real data” [22]. The derivative needed here is related to the
loss volume with respect to the service rate. In brief, IPA gives
analytical instruments to derive an estimator of the mentioned
derivative as function of the lengths of the measured congestion
periods of a traffic buffer. This requires real time measurements
over the system. Details about its derivation are briefly summa-
rized in the following.

As proved in [21] and [22], the durations of the so-called
“busy periods” of the buffer are the key to derive the IPA es-
timator. Let be a busy period of the buffer between two ob-
servation time instants (e.g., the bandwidth reallocation time in-
stants), namely, a period of time in which the buffer is nonempty.
In particular, two time instants within reveal to be topical.
Let be the starting instant of . Let be the instant of time

when the last loss occurs during . Then, for every
, it can be shown that

(11)

where is the value of the loss volume related to the given
busy period at station . This means the contribution to the
derivative of each active period , during which some losses
occurred, is the length of the time interval from the start of
until the last time point in at which the buffer is full. At the
time of a bandwidth allocation, denoting by the number
of active periods between two consecutive bandwidth alloca-
tions at station , we get an estimation of the performance index
derivative as

(12)

IPA estimators are “nonparametric,” since they are com-
putable directly from an observed sample path , without
any knowledge concerning the probability distributions of
the involved stochastic processes [19], [21], [22]. The mathe-
matical conditions requested for the validity of (11) are quite
general: must be Lipschitz continuous and the function

must be piecewise continuously differentiable
[21].

B. Allocation Algorithm Based on Sensitivity Estimation

The previously described derivative estimation, available for
each station at time , lets us establish a bandwidth reallocation
procedure, which consists of an exchange of information phase
followed by the resource allocations, performed by the master.

First of all, it is necessary to “relax” the discrete constraint
set into a continuous one

(13)

As proposed in [1] and [2], the discrete functional cost de-
fined over is transformed into a “surrogate” one over .
Then, the sensitivity estimation procedure is decentralized. Let

be the time interval necessary for each station to reach all

other stations with the “reallocation messages” (denoted by ).
Initially, the bandwidth resources are equally distributed among
the stations and, during the system evolution, each station , for
every , has to:

1) observe the buffer temporal evolution during the time in-
terval according to the current sample path
and bandwidth allocation ;

2) compute the gradient estimation
according to (11) and (12);

3) adjust the value of its “bandwidth allocation need” using
the gradient method

(14)

4) communicate such to each master station;
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5) (for each station that has the role of master station) by
looking at the information received by the other stations

(i.e., ), and on the

basis of the local bandwidth need , obtain

through
and convert to the nearest discrete feasible
neighbor so that ; such conversion de-
fines the bandwidth allocation for the satellite system in
the time interval .

The projection operator is defined as
.

The previous procedure stems from the usage of
, which is the measurable quantity

derived from IPA, in (14). Actually, we are trying to approxi-
mate the gradient with respect to , which would require the
application of PA on the discrete parameter set. However, since
we are considering a service rate, which can admit infinitesimal
perturbations, whose effect is evaluated from the sample path
through (11) and (12), we have chosen to apply IPA and to
perform what would be a descent step on the loss function
without discretization.

As is shown in [1], the nearest feasible neighbor
of can be determined, at step 5, by using
an algorithm based on the simplex method. However, it is pos-
sible to apply a simpler algorithm based on the discrete
neighbors of , not necessarily all feasible, and on the
selection of one of them, which satisfies the discrete constraint
set [2].

C. Decentralized Sensitivity Estimation Versus Centralized
Reallocation

The gradient-descent algorithm of step 3 allows a decentral-
ization of the optimization procedure. We suppose that a per-
sonal processor is assigned to each station ; in this way, the op-
timization procedure runs in parallel on each independent pro-
cessor located in each station [20]. Such distributed computation
is a very attractive property, as it enables each station to com-
pute its “optimized bandwidth need” locally on the basis of the
temporal evolution of the local stochastic processes.

D. Computational Complexity

The computational effort required by the IPA sensitivity es-
timation procedure is very low. The algorithm adopted in step
5 for the “surrogate to discrete” conversion is . For
this reason, and owing to the mild assumptions requested for
the applicability of the IPA technique, the proposed optimiza-
tion algorithm can be efficiently applied in real time.

E. System Signaling

The reallocation period depends on the satellite round trip
time (RTT). The master control station has to get the sensitivity
estimation of each earth station to compute the next reallocation,
and, particularly with geostationary satellites, which are located
at a distance of about 36 000 km from the earth with a RTT close
to 500–600 ms, it is necessary to consider the relevance of the
propagation delay for this information. If, at time , station

generates its new bandwidth need , such value becomes
available for all other stations only at the time .

So, a reasonable value for the reallocation time period is 1.0 s
[5], [10], [24].

In [6], a similar approach is applied for the optimization of
the CAC in a circuit switched network, and, at the best of our
knowledge, such technique has been adopted for the first time
to optimize the performance of a telecommunication network at
the packet level in [24].

In the following, we shall denote the application of this tech-
nique as sensitivity estimation and gradient descent (SE&GD)
optimization approach.

V. FUNCTIONAL OPTIMIZATION APPROACH

As we shall show in the simulation results, the SE&GD
can be successfully applied online if the step size in (14) is
properly refined by means of an offline performance evaluation.
If the optimal solution of the discrete stochastic optimization
problem reaches a steady state, also good performance for the
DES can be obtained, even if the gradient algorithm of step 3
needs suboptimal transient periods to reach the optimal steady
states. Clearly, the investigation necessary to evaluate the best
value for the gradient stepsize could be difficult, since several
simulations should be performed with different values of .
Moreover, if the behavior of the stochastic processes of the
DES does not allow the decision variables to reach a steady
state, it is quite difficult to verify if the proposed optimization
algorithm offers good performance.

In order to avoid these drawbacks and since it is impossible
to solve (7) analytically, we formulate a closed-loop control
strategy based on a functional optimization approach. The idea
is to provide resource reallocations as functions of a suitable
“information vector” , which summarizes the “recent his-
tory” of the DES. In particular, new resource reallocations are
performed for .

Let

(15)

be an aggregate vector that maintains a finite horizon memory
(of depth ) over the values assumed by the decision variables
and the measurable stochastic variables involved in the DES
during the time interval . We denote by

the reallocation period as outlined in the previous section.
Let be the functional cost
after such bandwidth reallocation along an infinite time horizon,
where

(16)

Let be a reallocation law, which provides a surrogate
continuous bandwidth allocation as a function of
the current information vector

(17)

Then, by converting into its discrete feasible neighbor
(by means of the algorithm mentioned in the pre-
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vious section), Problem D-SDRAP now becomes a functional
optimization problem.

Problem functional dynamic-stochastic discrete resource al-
location problem (FD-SDRAP): Find the optimal bandwidth
reallocation function , such that

, and the cost

(18)

is minimized.
Such formulation yields a closed-loop resource allocation law

able to perform online dynamic control reactions to variable
traffic and fading levels conditions. However, at time , new re-
allocations are performed “as if” they were to be applied without
changes in the future, i.e., possible changes in the statistics of the
random variables are disregarded. Then, the control strategy re-
sulting from the solution of Problem FD-SDRAP for successive
time instants can be considered as an OLFC
one [18]. The problem is now to formulate a technique aimed at
solving such functional optimization problem.

It is worth noting that the infinite horizon functional cost (16)
can be only computed through a simulation-based receding-
horizon approximation. The neural approximating scheme we
are going to investigate follows this direction, by exploiting a
finite horizon estimate of (16) for each possible stationary con-
figuration of the stochastic processes involved in the problem.

A. Modified Extended Ritz Method

In order to approximate the optimal OLFC resource alloca-
tion law , we propose a modification of the Extended Ritz
method of [25].

The Extended Ritz method approximates the solution of a
functional optimization problem by fixing the structure of the
decision functions. Namely, decision functions are constrained
to take on the structure of one hidden layer networks, i.e., linear
combinations of basis functions containing free parameters to
be optimized

(19)

where
and represents a suitable

basis function. The presence of the vector in the argument of
the basis functions provides powerful approximation properties
and allows facing the well-known curse of dimensionality, i.e.,
the possible exponential growth in the number of free parame-
ters needed to obtain a growing degree of accuracy [25], [26].

Among the possible basis functions in (19), we choose sig-
moidal functions. Then, we have

(20)

where is a sigmoidal activation function.
With such a choice, we have .
In the following, we shall define as the output of the neural
approximator, i.e.: . In order to guarantee the fulfil-
ment of the “continuous” channel constraints (13) (i.e.,

), we compose the output of the neural network with a

“normalization operator” . We, thus, obtain the surrogate
continuous bandwidth allocation at any time as

(21)

where

As to the capacity of the neural bandwidth allocation func-
tion to approximate the unknown optimal solution to Problem
FS-SDRAP, the reader is referred to [28], where the composi-
tion of a feedforward neural network with a normalization op-
erator is considered. Density properties are provided; moreover,
it is shown that the number of parameters required to achieve an
integrated square error of order is , i.e., it grows
linearly with the dimension of the input vector of the neural
approximator (20).

The surrogate continuous bandwidth allocation is then
converted to the feasible bandwidth allocation . In
the following, we shall call “neural approximators” the func-
tions (21) obtained as composition of the neural networks (20)
and the normalization operators . Moreover, we shall call
“neural bandwidth allocation function” the mappings made up
of the composition of the neural approximators together with
the application of the algorithm that projects each to its
discrete feasible neighbor and denote it as

.
It follows that a cost function is obtained by substituting the

fixed structure of such neural bandwidth allocation functions
into cost (18), which then depends on the parameter vector
and , thus, leading to the following mathematical programming
problem.

Problem - : Find the optimal parameter vector
such that the cost

(22)

is minimized.
In this way, the functional optimization Problem FD-SDRAP

has been reduced to an unconstrained nonlinear programming
one.

B. Training Algorithm

To solve (22), we apply a gradient-based algorithm

(23)

where is a fixed stepsize. However, the explicit computation
of the expected cost and its gradient is a very hard task, even
if closed-form formulas for the functional cost were
available. Following [25] and [28], we choose to compute a re-
alization instead of the gradient

and we apply the updating algo-
rithm

(24)

where the index denotes both the steps of the iterative
procedure and the generation of the th realization of the
stochastic processes and . The probabilistic algorithm
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(24) is related to the concept of stochastic approximation
[35] and conditions for its convergence are related to the
decreasing behavior of the step size . We have taken as

, and we have also added a
“momentum” term , as is usually done
in training neural networks. The components of the gradient

can be obtained by using the
classical backpropagation equations for the training of neural
networks [36]. For the sake of simplicity, in the following,
we omit the dependence on the time variable and define

, as the input of
each neural unit. Hence, we have (for )

(25)

The backpropagation procedure must be initialized by means
of the quantities (i.e., the gradient

). Unfortunately, in our case, such quantities
cannot be obtained analytically as in [25], [26], and [28], be-
cause no closed form for the functional cost is available.

In order to avoid such a heavy drawback, during the offline
training phase (24), we estimate the gradient
by means of the IPA technique outlined in Section IV.

Operatively, at step 0, a random initialization of the
vector is performed. Then, a sample path on a time
horizon is generated according to its probability
distribution. At time , the information vector is
collected and the bandwidth reallocation
is computed by means of the neural bandwidth allocation
function. Such a reallocation is applied over a time horizon

and the pseudo-gradient is approx-
imated through IPA (11)–(12), namely,

. The partial deriva-
tives are, thus, obtained by applying
the “chain rule,” i.e.

if

if
(26)

Once the quantities have been
computed, we are able to apply (25) and calculate by means
of (24). Then (step 2), we move to , collect the
information vector and repeat the same operations, thus, ob-
taining . The same procedure is applied until
(step ). Then, a new sample path is generated and a new
simulation is performed. The same steps are repeated until some
stopping criterion is verified.

C. Remarks on the Extended Ritz Mathematical Framework

1) Other Approximate Techniques: Other approaches
are known in the literature to approximate the solution of
NP-hard optimization problems. Among them, reinforcement
learning-neuro dynamic programming approaches (NDP) are
employed to overcome the computational burden introduced
by dynamic programming [7]. Through an offline Montecarlo
simulation approach, NDP is able to estimate the corresponding
optimal differential reward function, which is adopted online
to optimize the performance with some further computational
effort. In [7], a NDP technique is investigated to solve both
the CAC and the routing issues for a multiservice broad-band
network.

In this work, we have taken a somewhat different approach
concerning the approximating structure. The idea is to estimate
the optimal control law coming from a functional optimization
formulation of the problem, as highlighted by (18).

2) Computational Complexity: The previously described
training procedure (24) can be performed off line. In this re-
spect, the required computational burden does not influence the
online performance of the system. In real time, the optimized
neural bandwidth allocation function is applied, thus,
obtaining new resource allocations “almost instantly”. The
only online computational effort is related to the
mapping of the surrogate bandwidth allocations to
the discrete constrain set .

Moreover, if a PA technique is obtainable for the performance
index of interest, no further conceptual difficulty is involved if
one would want to employ the data collected online to perform
real time “adjustment” of the parameters’ vector through (24).

3) Generality of the Control Technique: The proposed
neural-based OLFC strategy is quite general, as it does not
assume any hypothesis concerning the stochastic properties of
the DES under investigation and, since the training algorithm
can be performed through simulation inspection (or directly
over the real system), it can be generalized for the optimization
of other performance indexes and according to different traffic
load statistics.

In the offline training phase, the behavior of the system
can be described by a suitable discrete event simulator, which
mimics the possible evolutions of the DES, thus, guaranteeing
the possibility of computing gradient estimates of the functional
cost. The system dynamic equations are not required explicitly.
Hence, the technique reveals to be suitable for optimizing
DESes whose dynamics and performance metrics are unavail-
able in closed form.

4) On Sensitivity Estimation Literature: Other approaches
are known in the literature concerning DESes optimization
through gradient estimates of the performance index of interest.
PA has been already mentioned in this work. Moreover, dy-
namic control reactions based on gradient estimates, acting over
Markov decision processes are studied in [37], [38]. It is worth
noting that all these techniques act online. Therefore, subop-
timal transient periods could arise in any case, even if variance
reduction methods were applied [38]. On the other hand, after
the training phase, the proposed neural OLFC approach yields
near-optimal control laws online, thus, avoiding the need of fur-
ther optimization steps. The following performance evaluation
is devoted to highlight this promising capability.
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5) Offline Training Without PA: Also without any PA tech-
nique, during the offline training phase, it is possible to obtain
an estimation of by means of simu-
lation analysis, namely, each can be
computed as

(27)

where means that one further MAU has been added to
(the th component of the discrete resource vector ). Clearly,

is computed through simulation inspection only,
as suggested in [1]. In this way, the PA technique reveals to be an
instrument for accelerating our offline training phase, whereas,
in the online surrogate methodologies, it is the main component
of the optimization algorithm [6], [20], [23], [24].

In the following, we shall denote the application of this tech-
nique as “ExtRitz.”

D. Remarks on the Networking Environment

1) Traffic Model: Further considerations are needed con-
cerning the adoption of the traffic model introduced in Section
II-B, also used for the following performance evaluation.

In recent years, analyzes of packet-based traffic have demon-
strated that its main statistical characteristics have good affinity
to Self-Similar processes. Intuitively, self-similar traffic is sup-
posed to present the same statistical behavior over largely dif-
ferent time intervals. W.E. Leland, M.S. Taqqu, W. Willinger
and D.V. Wilson analyzed Ethernet traffic [39], highlighting its
self-similar nature, as V. Paxson and S. Floyd [40] extended
these observations to the TCP protocol over WANs. Besides,
M.W. Garrett and W. Willinger [41] proposed this model also
for video VBR traffic. Self-similar traffic arises for wireless net-
works, too. The self-similarity nature of traffic is mostly related
to users’ behavior than to the underlying technology. For in-
stance, in [42] and [43], four types of traffic profiles are mod-
eled as self similar sources, on the basis of the most frequently
used wireless applications: e-mail, www, file transfer protocol,
and telemetry traffic. The adopted self-similar model allows us
to mimic the statistical behavior of queuing systems of current
telecommunication networks.

2) Protocol Architectures and Performance Con-
straints: Some additional words are necessary concerning the
application of the proposed techniques in different networking
scenarios. We mentioned a satellite system is dealt with in
this work. The related network protocol architectures are
typically based on ATM or DVB. In this context, we firstly
must note that the proposed techniques are independent of the
corresponding encapsulation formats of the packets (ATM or
DVB). Actually, the measured th loss volume is a function of
the packet-based frame produced at station . More specifically,
our optimization framework could be related to a Best Effort
network (based on the TCP/IP suite over DVB or on the
ATM ABR service class), where no priority traffic exists and
resources have to be shared among all the users. We therefore
obtain the minimization of the overall loss probability without
taking into account any specific QoS differentiation. On the
other hand, QoS requirements could be taken into account,
by formulating the network optimization problem at the call
level (as done, for instance, in [6], [7], and [10]). In this
case, the metric under investigation reveals to be the blocking

probability of the connection requests. Blocking probability
(or other performance constraints, such as delay or delay jitter)
can be managed without affecting the control design. The
considered functional costs and their gradients being computed
through active measurements, the proposed control algorithms
are suitable for managing system dynamics whose temporal
behaviors can be monitored through real time sampling.

Another important aspect is related to the effect of large de-
lays over the system performance, in particular when a single
centralized unit is responsible for the resource management. We
recall that, in the network we are considering, a master station
periodically implements the reallocations for all components of
the system, but the calculations needed are performed at the
earth stations. Thus, the only impact of delays in our alloca-
tion mechanism regards the signalling phase, required by the
master station to perform the normalization and the subsequent
projection onto the discrete domain. However, this delay in our
specific context is the one introduced by the satellite, which is
relatively low (in the order of 500 ms for a geostationary satel-
lite), but fixed. As our allocation is performed at the data link
layer, and regards the sharing of a single link, variable delays in
the network would not influence it. Performing the allocation in
one satellite round-trip delay is generally acceptable.

VI. SIMULATION RESULTS

A. Bandwidth Allocation Strategies

We now summarize the bandwidth allocation strategies
adopted for comparison in the following simulation results.
At the end of each simulation, the final loss volume of the
overall satellite system is computed in terms of the average loss
probability.

1) CF&DP: The certainty equivalent approach formulated
in Section III is employed. For all stations in the satellite system,
a perfect knowledge on both the state of traffic sources and the
fading levels is assumed. The sensitivity of the solution obtained
through CF&DP is investigated, with respect to possible estima-
tion errors over the parameters of the traffic sources. The delay
due to the computational burden introduced by dynamic pro-
gramming is disregarded, fixing the reallocation time interval
always to 1.0 s, independently of the related computational ef-
fort.

2) SE&GD (Sensitivity Estimation and Gradient De-
scent): The optimization algorithm described in Section IV
is adopted, and derivative estimations are computed. Different
values of the gradient stepsize are taken into account. We
denote with “SE&GD ” the SE&GD technique, in which the
gradient stepsize is set to a fixed value, e.g., “SE&GD ”
means that is fixed to .

3) ExtRitz: the neural OLFC strategy of Section V is
applied. The optimal parameters’ vector characterizing
the neural bandwidth allocation function is obtained off line
by means of the stochastic gradient technique described in
Section V.

The bandwidth allocation strategy is implemented by
adopting a neural network with 1 hidden layer with 15 sig-
moidal neural units. The parameters of the training
algorithm (24) are fixed to 10.0, 1.0, 0.3, respectively. The
depth of the time horizon of the information vector has
been dimensioned in order to achieve a satisfying performance.
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TABLE I
TRAFFIC LOAD CHANGES

The IPA formulas (11) and (12) have been used in order to
initialize the backpropagation procedure. The gradient descent
(24) iterates the training steps with several independent repli-
cations of the following simulation scenarios until the stopping
criterion is satisfied.

We developed a C++ simulator for the queues of the satel-
lite network and for the optimization algorithms proposed in
this paper. We verified the performance of a satellite system
composed of two earth stations. The following loss measures
are averaged over 15 independent replications of the simula-
tion scenario. Initially, the number of stations has been inten-
tionally kept to such low value, in order to better understand
the behavior of the various techniques compared under different
traffic pattern and fading situations. Increasing the number of
stations to simulate more complex scenarios would not substan-
tially change the evaluation, but it would make the comparison
not so immediate and easy. Finally, however, we address the
scalability of the neural control, by increasing the number of
traffic stations.

B. Traffic Load Changes

For the time being, we suppose no fading attenuation acting
over the system (i.e., ,
being the simulation time). Each source is supposed to transmit
at a peak bit rate 1.0 Mb/s, the total capacity is fixed
to 80.0 Mb/s 800 MAUs and to 6 min. The number
of sources for each station is fixed at 100 for all . During
the simulation scenario, the average values of active and silence
periods of the sources (respectively, and ) are changed ac-
cording to Table I. Two different burst arrival rates (i.e., the av-
erage number of bursts “seen” by the stations) are taken into ac-
count in order to generate variable traffic conditions, leaving all
the other traffic parameters equal for each station. In this way,
the station in high traffic conditions (i.e., with 1.0)
receives a burst arrival rate of 50.0
bursts/s, , while, for the one in low traffic conditions,
the burst arrival rate is 25.0 bursts/s, . (see
Table I).

Both stations are provided with a finite buffer of 100 ATM
cells, thus, guaranteeing a reasonable bound for the mean delay
and delay jitter; e.g., with an allocation of 25.0 Mb/s (that is
a lower bound of the following bandwidth allocations), such
bound is around 2.0 ms for each ATM cell.

The reallocation period has been kept fixed at 1.0 s as out-
lined in Section IV. The master control station has to get the
sensitivity estimation of each earth station to compute the next
allocation of bandwidth in the SE&GD technique and the infor-
mation vector in the ExtRitz strategy. The MAU is set to
100 kb/s as in [5], [10], and [24].

The depth of the time horizon of the information vector
in the ExtRitz technique was set to 5, namely, the neural

Fig. 2. Traffic load changes. SE&GD bandwidth allocation with different
gradient step sizes.

Fig. 3. Traffic load changes. SE&GD bandwidth allocation with different
gradient step sizes.

Fig. 4. Traffic load changes. SE&GD bandwidth allocation with different
gradient step sizes.

bandwidth allocation strategy at time depends
on the values assumed by the inflow processes at the time
instants . Up to 200 indepen-
dent replications of the proposed simulation scenario have been
necessary to achieve a steady state in the ExtRitz’s bandwdith
allocation. The simulation time of the training phase was around
10 h with an AMD Athlon at 1.8 GHz.

A sample path in the bandwidth allocation for the SE&GD
technique is depicted in Figs. 2–4 where, for each station, the
fraction of the total system’s capacity assigned by the SE&GD
technique is visualized. It is clear how SE&GD is able to react to
traffic variations: in the first minute, station 1 suffers of a heavier
traffic load and a larger quantity of MAUs has been allocated to
it. The situation is inverted in the second minute, and it is clear,
in this case, how SE&GD provides more resources to station 2.
In the third minute, the situation is brought back to the one of
the beginning and the same behavior arises in the following 3
min. Looking at Figs. 2–4, it is also clear that different values of
the stepsize allow different behaviors in the bandwidth allo-
cations; in particular, the suboptimal transient periods are much
more evident with .

Looking at the ExtRitz bandwidth allocations (Fig. 5), it is
clear how the ExtRitz is able to provide the optimal bandwidth
allocations without any suboptimal transient period. This fact,
clearly, has an impact on the system performance.

In Figs. 6–7, the CF&DP’s bandwidth allocations are de-
picted together with the ones obtained through ExtRitz. Also
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Fig. 5. Traffic load changes. ExtRitz bandwidth allocation.

Fig. 6. Traffic load changes. ExtRitz versus CF&DP.

Fig. 7. Traffic load changes. ExtRitz versus CF&DP.

the CF&DP reveals to be a good heuristic for the bandwidth al-
location, as it is able to follow the variable traffic conditions.
Nevertheless, it does not maintain the best resource allocation:
the bandwidth allocation to the station in heavier traffic load is
lower than the one obtained by applying the ExtRitz (around 47
Mb/s using CF&DP in front of the 53 Mb/s obtained with the
ExtRitz). This has an impact on the system performance, too.

In Fig. 8, the overall loss probability of the system is shown.
We denote by CF&DP ErrX the application of the CF&DP

technique with a percentage error over the traffic load foreseen
at station 1, i.e., we highlight the performance of the CF&DP
technique in which the feedback over the state of the first station
underestimates the real traffic load with a percentage error that
amounts to X% over the real value. For example, with %,
a of 45 bursts/s is employed in the functional cost (8) of
the CF&DP technique, instead of the real value of 50 bursts/s.
Such estimation errors severely decrease the CF&DP’s perfor-
mance, especially if they affect the feedback with a percentage
error around 30%. On the other hand, with a perfect feedback
on the system’s state, the CF&DP technique reaches good per-
formance, but only the application of the SE&GD and the Ex-
tRitz techniques guarantees the best approximation of the op-
timal solution. They are able to achieve the optimal equilibrium
in the bandwidth allocation, thus, guaranteeing better perfor-
mance than the one reached by the CF&DP approach, even in
the presence of a traffic load, whose statistical behavior is close
to the assumptions adopted to provide a closed-form expression
of the loss performance metric.

The intuition behind such efficiency relies on the sensitivity
of the gradient descents (14) and (24). They are driven by IPA

to capture the system performance through measurements pro-
vided on the real system. We verified in our simulations that
they follow, for each stationary configuration of the system (e.g.,
for each combination of ), an equilibrium
point characterized by the equalization of all the loss probabili-
ties of the stations. This equilibrium is also characterized by the
equalization of all components of the gradient used in (14) and
(24). On the other hand, the CF&DP technique, even if a per-
fect knowledge over the traffic sources’ state is available, does
not yield the optimal resource allocation. In fact, the Loss for-
mula (8) holds asymptotically in the number of sources ([17])
(i.e., the number of sources in the aggregated flow should tend
to infinity). In a realistic scenario with a finite number of on-off
sources, it provides only a heuristic indication about the band-
width needs of the stations.

Fig. 8 outlines how ExtRitz guarantees the best performance.
The SE&GD 10E6 (i.e., ) is able to reach a loss
probability very close to the best one. It is worth noting that
either SE&GD with too low gradient stepsize values (i.e.,

) and with too high gradient stepsize values (i.e.,
) fails in optimizing the system performance.

With the DES reaches the same loss probability
of an equal bandwidth distribution among the stations (around

) and with loss probability values over
20% are reached. This latter case is due to the fact that, with

, too high bandwidth oscillations are produced, thus,
leading to a strong decrease in the system performance.

C. Fading Changes

We consider now the effect of the fading phenomenon. The
time horizon of the simulation scenario has been increased
to 1000 s (around 16 min) and the channel capacity is fixed at
53.0 Mb/s 530 MAUs . Again, a group of on-off sources
with Pareto distributed burst periods of activity constitutes the
inflow process for each station . The peak bit rate ,
the mean burst and silence period of such on-off sources are
fixed to 1.0 Mb/s, 1.0 s and 1.0 s, respectively. The number of
on-off sources for each station is fixed at 10 1,2.
All of the other system’s parameters (buffer dimensions, MAU
values and reallocation time interval’s length) are equal to the
ones of the previous simulation scenario. This time, no traffic
changes take place, namely, each inflow process generates a

5 bursts/s for each station of the satellite system,
1,2.

The employed fading processes come from [10], where real-
life fading attenuation samples are taken from a data set chosen
from the results of experiments, in Ka band, carried out on
the Olympus satellite by the CSTS (Centro Studi sulle Teleco-
municazioni Spaziali) Institute, on behalf of the Italian Space
Agency. The up-link (30 GHz) and down-link (20 GHz) sam-
ples considered were 1-s averages, expressed in dB, of the signal
power attenuation with respect to clear sky conditions. The Car-
rier/Noise Power factor is monitored at each station
and, on the basis of its values, different bit and coding rates are
applied, in order to limit the BER below a chosen threshold of

. Six different fading classes are defined, corresponding to
combinations of channel bit rate and coding rate that give rise
to redundancy factors

. represents the ratio between the information bit rate
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Fig. 8. Traffic load changes. Loss performance.

Fig. 9. Fading changes.

(IBR) in clear sky and the IBR in the specific working condi-
tion. This gives rise to corresponding bandwidth reduction fac-
tors . With the data adopted in [10] we
have

and, consequently, the bandwidth reduction can be computed as
(the value

corresponds to an outage condition).
As is shown in Fig. 9, the employed fading processes de-

termine strong peaks of channel degradation, especially for the
second station.

The depth of the time horizon of the information vector
in the ExtRitz technique was set to 3, namely, the neural

bandwidth allocation strategy at time depends on the values
assumed by the fading processes at the time (i.e.,
the time of the previous bandwidth allocation) and at the time
instants . 300 independent replications of the
proposed simulation scenario have been necessary to achieve a
steady state in the ExtRitz’s bandwdith allocation. The simula-
tion time of the training phase was around 10 h (on the same
AMD Athlon at 1.8 GHz).

In Figs. 10 and 11, the bandwidth allocations of the SE&GD
and the CF&DP techniques are depicted for each satellite sta-
tion. This time, the application of the CF&DP technique guar-
antees more sensible differences in the bandwidth allocations
than SE&GD. On the other hand, SE&GD reacts to fading vari-
ations only when the first strong attenuation at station 2 arises
(after around 200 s of simulation). As is clear from Fig. 12,
in which the bandwidth allocations obtained with the SE&GD
and the CF&DP techniques are compared for the second sta-
tion, SE&GD is not able to follow the variable fading condi-
tions, due to their fast variations. However, it yields, for sta-
tion 2, bandwidth allocations higher than the CF&DP’s ones,
especially during the time periods of lowest fading levels (time

Fig. 10. Fading changes. SE&GD 3E7 bandwidth allocation.

Fig. 11. Fading changes. CF&DP bandwidth allocation.

Fig. 12. Fading changes. CF&DP versus SE&GD 3E7.

intervals [200, 300], [500, 600], [700, 800]). For this reason,
after optimizing the gradient stepsize, as is shown in Fig. 13,
the SE&GD outperforms the CF&DP’s performance.

On the other hand, the ExtRitz strategy (Fig. 14) yields the
best reallocation decisions, as it leads to a sequence of band-
width reallocations sensibly different from the CF&DP’s ones
(Figs. 15 and 16) without any transient period.

In Fig. 17, the presence of estimation errors over the
state of the traffic load is taken into account. As previously,
“CF&DP ErrX” means that the feedback over the state of the
first station underestimates the real traffic load with a per-
centage error of X%. This time, the CF&DP technique reveals a
performance more insensitive with respect to estimation errors
over the traffic state, because the major impact is due to the
fading effect (Fig. 13). It is worth noting that the estimation
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Fig. 13. Fading changes. Loss performance.

Fig. 14. Fading changes. ExtRitz allocations.

Fig. 15. Fading changes. CF&DP versus ExtRitz.

Fig. 16. Fading changes. CF&DP versus ExtRitz.

errors over the real traffic state on station 1 allow the CF&DP
technique to achieve better performance, as they lead to a
bandwidth allocation closer to the optimal one in the time
interval of the lowest fading levels for station 2 (Fig. 17).

D. Scalability of the Neural Control

The last topic addressed in the performance evaluation re-
gards the scalability of the neural control. Our major concern
relies on the computational time needed to complete the learning
descent (24). Actually, in the presence of a high number of sta-
tions in heavy traffic conditions (either with a high number of
sources or with high peak rates), the channel capacity should

Fig. 17. Fading changes. ExtRitz versus CF&DP Err0.3 at station 2.

be properly dimensioned to assure reasonable loss probabilities
(usually are the performance targets). As a result,
the involved high channel capacity implies a fine granularity of
the simulation that severely affects the duration of the training
phase. For instance, even a small cycle of training steps would
require several hours to complete. Consequently, we need to find
out a way to accelerate the ExtRitz training, without penalizing
the good performance shown in previous subsections.

A possible way of facing this problem can be attempted
with the following heuristic. We define a modified information
vector, which depends on the arrival rate differences among
the stations. Let be the index of the station that measures
the lowest arrival rate at a given time instant. We redefine the
information vector as ruled by (28). It does not depend on the
absolute values of arrival rates as in (15), whereas it exploits
the levels of congestion, computed as the relative increase in
the inflow rates with respect to the th station (i.e., the one
affected by the lightest traffic load)

with

(28)

The rationale behind this procedure stems from the fact that
the neural networks produce at their output allocation values be-
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Fig. 18. Scalability. Allocations of the control techniques.

Fig. 19. Scalability. Allocations of the control techniques.

fore normalization and discretization; in such “unconstrained”
allocations, relative congestion differences can be taken into ac-
count, which are then rescaled by the subsequent operations.
This choice allows us to train the neural bandwidth allocation
function with a small number of sources, with small source peak
rates and with a low channel capacity. Therefore, the time com-
putation of the involved training is significantly reduced. After
training, the ExtRitz scales up its performance independently of
the working conditions (in terms of traffic load and channel ca-
pacity). We validated this approach as detailed in the following.

We performed several tests with 5 stations in the system, by
using the previous method. We took as target performance a loss
probability around 2% (being, as for ITU-T.54 recommenda-
tion, the regular performance requirement of a Voice over IP
service). The channel capacity is adapted in dependence of the
number of active sources and of the given peak rates to guarantee
the mentioned loss probability. The training phase is relative to
50 sources in each station producing 120 kb/s of peak rate each.
The channel capacity is 12.0 Mb/s. The buffer size is 200 ATM
cells. The depth of the information horizon is 3. The training
parameters are fixed as: 0.3. Two dif-
ferent burst arrival rates have been considered as in Table I. The
training procedure took around 1 h to complete. After training,
we verified a stable performance increase by using ExtRitz. The
increase, expressed in percentage, is 23% with respect to the
CF&DP approach and 20% with respect to SE&GD. It means
that when ExtRitz achieves 2% of loss probability, the losses ob-
tained with CF&DP and SE&GD are 2.71% and 2.61%, respec-
tively. The same performance is maintained when increasing
the sources’ peak rate up to 500 kb/s and the channel capacity
to 55.0 Mb/s, without repeating the training phase. The cor-
responding allocations are reported in Figs. 18–22. Note that
the SE&GD allocations, owing to their strong oscillations, are
impractical. The optimal steady states, achieved by ExtRitz,
are sensibly different from the CF&DP’s ones. The mentioned
SE&GD’s performance is relative to the best value of the em-
ployed gradient step size. However, the computation of the op-
timal gradient stepsize requires an extensive simulation inspec-
tion.

Fig. 20. Scalability. Allocations of the control techniques.

Fig. 21. Scalability. Allocations of the control techniques.

Fig. 22. Scalability. Allocations of the control techniques.

E. Final Remarks

In the proposed simulation scenarios, clear steady states in
the optimal allocations arise, with respect to each combination
of fading classes and burst arrival rates. For instance, in the
first simulation scenario, it is easily observable from Figs. 2–4
(SE&GD) and Fig. 5 (ExtRitz) that a bandwidth allocation
around 53.0 Mb/s, 27.0 Mb/s reveals to be
optimal with respect to the burst arrival rates 50.0
bursts/s, 25.0 bursts/s (and viceversa when the role
of the station in higher traffic load is inverted). In spite of
the convergence capability of the SE&GD technique, one
could choose to adopt it off line, in order to compute, for each
possible combination of fading classes and burst arrival rates,
the optimal allocations; then, to store them in a lookup table
and to reapply them in dependence of the current state of the
network. In this way, we avoid the suboptimal transient periods
introduced by the SE&GD approach. Thus, the investigation
of more complicated control techniques (as the ExtRitz pro-
posed in this work) would be useless. However, such heuristic
assumes again a perfect knowledge about the traffic sources.
As we outlined before, the maintenance of this knowledge is
a very hard task. The adoption of adaptive strategies, capable
to “learn” the best resource through real time measurements
reveals to be topical. In particular, it constitutes a powerful
tool for the optimization of DESes in which no closed-form
formulas of the system dynamics are available. The SE&GD
strategy catches the optimal resource allocation at the end of its
gradient descent. On the other hand, after the training phase, the
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ExtRitz yields the optimal resource allocation in dependence of
the data collected in the information vector.

VII. CONCLUSION AND FUTURE WORK

Two novel optimization algorithms have been proposed to
react to fading and traffic load changes over a satellite network,
based on an online surrogate optimization methodology and on a
neural network-based OLFC approach, respectively. They allow
the application of online control decisions in real operating con-
ditions and with a small computational effort. The simulation
results have shown that they guarantee good performance, even
better than the one obtained by employing a strategy that main-
tains a perfect knowledge about the statistical properties of the
traffic sources. A proper training algorithm has been used, aimed
at the offline numerical approximation of the optimal OLFC law.
Such training algorithm, differing from [25], [26], and [28], does
not need any analytical expression of both the functional cost
and the system dynamics.

The proposed OLFC approach shows the best performance,
as it is capable to avoid the suboptimal transient periods of the
online surrogate optimization technique. In fact, the optimal
control law can be numerically approximated during the offline
training phase, and then it can be employed online without fur-
ther optimization steps. Such optimization technique reveals to
be applicable and is currently being investigated in other net-
work scenarios (for example in the contexts of terrestrial wire-
less or QoS networks) and with respect to different QoS require-
ments (such as delay and delay jitter).
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