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Abstract – An application of the model proposed in Cello
at al., A Model of Buffer Occupancy in ICNs, IEEE Com-
munications Letters, to appear is investigated. Such a model
provides a relationship in the z-domain between the discrete
probability densities of the buffer state occupancies of the
nodes in the network and the sizes of the arriving bulks. Un-
der a class of two-hop forwarding strategies, expressions are
obtained for the average buffer occupancy and its standard
deviation.
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1 Introduction
In the last years various applications emerged, where net-

works operate under conditions in which the assumptions
of “universal connectivity” and “global information” do not
hold. Examples are sensor networks [8], social networks or
pocket switched networks [6], smart environments, and ve-
hicular ad-hoc networks [18]. A common denomination of
such contexts is Intermittently Connected Networks (ICNs).
As in such contexts the networks may be disconnected most
of the time or it may even happen that there is never an
end-to-end path available between source and a destination,
classical routing and data delivery-approaches (see, e.g., [1])
fail [14].

In [12] it was proved that the expected throughput of re-
active protocols (which compute a route only when it is
needed) is connected with the average path duration pd, the
time to repair a broken path tr, and the source data rate r

through the relationship: throughput = max(0, r(1− tr
pd
)).

However, node mobility leads to frequent disconnections,
thus reducing the average path duration significantly. Con-
sequently, in most cases tr is expected to be larger than the
path duration, which implies that the expected throughput is
close to zero. Other approaches to deal with routing in ICNs
involve the use of additional communications resources (e.g.,

satellite, UAV, message ferries) forced to follow a given tra-
jectory between disconnected parts of the network, in order
to bridge the gap [10, 20] (DataMule, Message Ferries, etc.).
In other cases, such as in inter-planetary networks [2], in-
termittent connectivity is predictable, so classical routing al-
gorithms may be adapted to compute shortest delivery time
paths by taking into account future connectivity [7].

Often, neither additional resources with controlled behav-
ior nor predictable trajectories are available. In such cases,
one of the most common approaches is epidemic routing
[17], which is based on the replication and transmission of
messages to newly-discovered contacts that do not already
possess a copy of the message. In epidemic routing each
node maintains a buffer, consisting of messages that it has
originated and messages that it is buffering on behalf of other
nodes. When two nodes meet each other, they decide how
many and which stored messages are exchanged. In turn,
each node requests copies of messages from the other. In the
simplest case, epidemic routing is flooding: each time a con-
tact happens, all messages that are not in common between
the two nodes are replicated.

In general, however, message replication performed by
epidemic routing paradigms imposes a high storage overhead
on wireless nodes [19] and very likely node buffers run out
of capacity. More sophisticated techniques can be used to
limit the number of message transfers. Existing epidemic
protocols try to avoid congestion by limiting, either in a de-
terministic [13] or in a non-deterministic way [11, 16], the
number of copies of a message inside the network. So, an
analytical framework for congestion control management is
needed.

This is the subject of the present contribution, which ex-
tends our previous work [3] by applying the model proposed
therein to the kind of epidemic routing known as two-hop
forwarding. First, we describe the analytical framework de-
veloped in [3], based on bulk arrival and bulk service queues,
to model ICN nodes behavior (Section 2). Then we discuss a
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relationship between the stationary discrete probability den-
sities of the state occupancies of the ICN node buffers and
the discrete probability densities of the sizes of the arriving
bulks. As a further step, we investigate a class of two-hop
forwarding strategies used by ICN nodes and sometimes ex-
ploited in epidemic routing (Section 3). For such a class of
forwarding strategies, we derive an expression for the aver-
age buffer occupancy (Section 4). Finally, we discuss related
literature (Section 5) and draw some conclusions (Section 6).

2 Model description
We consider the following ICN scenario. M nodes, de-

ployed in an area, follow a certain mobility model, for which
we impose the following property: for each couple of ICN
nodes (m,n ∈ {1, . . . ,M},m �= n) the number of encoun-
ters between them in any given interval of time is a Pois-
son random variable. This obviously means that the inter-
meeting time between two generic ICN nodes m and n is an
exponentially-distributed random variable. Popular mobility
models such as Random Waypoint and Random Direction [5]
enjoy such a property.

We denote by L ⊆ {1, . . . ,M} the set of destination
nodes. We model each node as a battery of queues (Figure
1). Within a specific node j ∈ {1, . . . ,M}, there are |L(j)|
queues, where L(j) � L \ {j}. Each l-queue (l ∈ L(j))
within the node j receives incoming data for the destination
node l in two different modes. Either the data directed to l are
internally generated by node j or they have been sent to j by
other nodes during previous encounters with j, on the basis
of a forwarding strategy. When node j ∈ {1, . . . ,M}, j �= l

encounters node l which is the destination of data it holds in
its l-queue, it empties the l-queue completely sending all its
data to l. To allow this operation, we assume that the maxi-
mum data exchange time between two nodes is much smaller
than the average duration of the encounter.

More formally, node j encounters the destination node l

with average rate µj,l [encounters/s] and sends to l all the
packets buffered in its l-queue. Node j generates data in
bulks, assigned to l, with average rate rj,ls [generations/s]
and, at each generation, it produces Ij,ls [bulks/generation],
set to 1 in this letter. The average rate of bulk generation
is λj,l

s = rj,ls Ij,ls [bulks/s]. We assume an exponentially-
distributed time between two consecutive bulk generations.
Node j meets any node different from the destination l with
average rate Ej,l

e =
�M

h=1,h �=j,l µ
j,h [encounters/s] and, at

each encounter, receives Ij,le [bulks/encounter], set to 1 in
this letter. The corresponding bulk generation process has
rate λj,l

e = Ej,l
e Ij,le [bulks/s] and is a Poisson process, since

it is the sum of independent Poisson processes. The two pro-
cesses of bulk generation with associated average rates λj,l

s

and λj,l
e are assumed to be independent. Due to the assump-

tion on the mobility model and on the generation of bulks,
the global process of bulk arrivals in the l-queue is Poisson
process. We denote by λj,l = λj,l

s +λj,l
e [bulks/s] its average

rate.
The size of each bulk (i.e., the number of packets in the

bulk) is also a random variable. We denote by g
j,l
k,e the prob-

ability that the bulk assigned to l and received by j during an
encounter is composed of k packets, and by g

j,l
k,s the prob-

ability that the bulk generated by node j and assigned to
node l is composed of k packets. The average arrival rate
of bulks of k packets in the l-queue, measured in [packets/s],
is λj,l

s g
j,l
k,s + λj,l

e g
j,l
k,e, as indicated in Figure 1. For k ∈ N0,

we denote by {gj,lk,s} and {gj,lk,e} the sequences whose com-
ponents are g

j,l
k,s and g

j,l
k,e, respectively; {gj,lk,s} and {gj,lk,e}

represent the discrete probability densities of the sizes of the
two kinds of bulks. We denote by p

j,l
k the stationary proba-

bility that the l-queue of node j has k packets and by {pj,lk }
the sequence that represents the discrete probability density
of the size of the l-queue in node j.

The model introduced above allows us to model the evolu-
tion of each l-queue as a continuous-time Markov chain with
bulk arrivals and bulk services. The transition rate from a
generic state h to the state h+k is Aj,l

k = λj,l
s g

j,l
k,s+λj,l

e g
j,l
k,e,

which is the average arrival rate of bulks of length k. On
the other hand, if we consider the overall bulk arrival pro-
cess with average rate λj,l = λj,l

s + λj,l
e , then A

j,l
k can be

expressed as Aj,l
k = λj,lg

j,l
k where gj,lk is the probability of a

k-length arrival. So, gj,lk can be simply computed as in (1):

g
j,l
k =

λj,l
s

λ
j,l
s + λ

j,l
e

g
j,l
k,s +

λj,l
e

λ
j,l
s + λ

j,l
e

g
j,l
k,e . (1)

The quantity g
j,l
k,s can be interpreted as an endogenous com-

ponent, since it is associated with the packets generated in-
side the currently considered node, and g

j,l
k,e as an exogenous

component, since, in general, it depends on the forwarding
strategies of the other nodes (see Section 3 for a class of
possible models for {gj,lk,e}). The two terms λj,l

s

λ
j,l
s +λ

j,l
e

and
λj,l
e

λ
j,l
s +λ

j,l
e

in (1) play the role of weights. We denote by {gj,lk }

the sequence composed by the g
j,l
k values, which represents

the discrete probability density of the size of the bulk (in-
dependently from its origin). The complete model of the
Markov chain with its transition rates is shown in Figure
2. The model is derived similarly to the ones discussed by
Kleinrock in [9, pp.134-139] for different problems, in which
only the arrivals or only the services are in bulk form.

To simplify the notation, supposing to refer to node j and
queue l, in the remainder of the letter we omit the super-
scripts j and l. So, (1) becomes

gk =
λs

λs + λe

gk,s +
λe

λs + λe

gk,e . (2)

It can be proved easily that for any choice of the dis-
crete probability density {gk}, the continuous-time Markov
chain in Figure 2 is irreducible and positive recurrent and
that these properties are inherited by its associated embed-
ded Markov chain. For this case, it is known that the sta-
tionary discrete probability density {pk} always exists and is
unique [4, Theorems 3 and 8, Chapter 5]. The next propo-
sition from [3] provides a relationship between {pk} and
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Figure 1: Model of the generic ICN node j ∈ {1, . . . ,M}
and its l-queue, where l ∈ L(j) (k ∈ N0).
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Figure 2: Transition rates for the continuous-time Markov
chain related to l-queue inside node j.

{gk} by using their z-transforms P (z) �
�∞

k=0 pkz
−k and

G(z) �
�∞

k=0 gkz
−k.

Proposition 2.1 P (z) andG(z) satisfy

P (z) =
µ

(λ+ µ)− λG(z)
. (3)

Note that such z-transforms have nonempty regions of
convergence at least for |z| > 1. Indeed, considering for
instance the case of the sequence {pk}, one has

∞
�

k=0

|pkz
−k| ≤

∞
�

k=0

|z−k| =
|z|

|z| − 1
< ∞, for |z| > 1.

3 A class of two-hop forwarding
strategies

In two-hop forwarding, a packet can reach the destination
only when one of these events occurs: 1) the source node
meets the destination node; 2) the destination node meets an-
other node that has previously received the packet from the

source node itself. In this section and in the next one, we
suppose that all the nodes of the network have the same traf-
fic parameters and follow the same forwarding strategy. A
possible forwarding strategy, which is a way to implement
two-hop forwarding, is the following: inside each buffer,
each node distinguishes between the packets generated by
the node itself and the ones coming from the other nodes.
When a node meets another one that is different from the
destination, the latter sends all the packets generated by itself
to the first node with probability q, otherwise no exchange is
performed with probability (1 − q). In other words, sup-
pose that the node analyzed j, which contains the l-queue
under study, encounters the node i �= l. Node i downloads
to j all the packets generated by i and contained in its l-
buffer with probability q. We denote by {p̄k} the stationary
probability that node i contains k packets generated by i it-
self in its l-buffer (such a probability does not depend on i,
since by assumption all the nodes of the network have the
same traffic parameters). The next corollary provides a rela-
tionship between the z-transforms P̄ (z) and Gs(z) of {p̄k}
and {gk,s}, respectively. We denote by {δk,h} the Kronecker
delta (δk,h � 1 for k = h and δk,h � 0 otherwise).

Corollary 3.1 P̄ (z) andGs(z) satisfy

P̄ (z) =
µ

(λ+ µ)− (λsGs(z) + λe)
. (4)

Proof. The result is obtained by applying Proposition 2.1 ne-
glecting the exogenous component (which does not influence
the content of the portion of the buffer made up only of the
internally generated packets), i.e., setting {gk,e} = {δk,0},
whose z-transform is Ge(z) = 1. Then one applies G(z) =

λs

λs+λe
Gs(z) +

λe

λs+λe
Ge(z) (which follows by (2)). �

So, turning back to the model of two-hop forwarding, the
size of the portion of the l-buffer in the node i made only
by the packets generated by i is k with probability p̄k, and i

sends k packets to j with probability p̄kq. On the other hand,
node i does not send anything to node j in two cases: the
first one happens with probability p̄0q, i.e., when the portion
of the buffer in i used for l and composed only by the pack-
ets generated by i is empty; the second one happens with
probability (1− q) because of the forwarding strategy. More
formally, {gk,e} is given by

{gk,e} = (1− q){δk,0}+ q{p̄k} , (5)

for q ∈ [0, 1]. Corollary 3.2 provides an expression for the
z-transform P (z) of the sequence {pk} under the class of
two-hop forwarding strategies (5).

Corollary 3.2 If {gk,e} has the form (5), then

P (z)

= µ

(λ+µ)−(λsGs(z)+λe((1−q)+q
µ

(λ+µ)−(λsGs(z)+λe) ))
. (6)

Proof. It is obtained by applying Proposition 2.1 with {gk,e}
of the form (5) (whose z-transform is Gs(z) = (1 − q) +
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qP̄ (z)) and replacing P̄ (z) by its expression provided by
Corollary 3.1. �

For the following analysis, the values of P �(z) and P ��(z)
(the first and the second complex derivatives of P (z), respec-
tively) computed at z = 1 are also needed. Starting from the
expression of P (z) in Corollary 3.2, simple computations
provide the following corollary.

Corollary 3.3 If {gk,e} has the form (5), then

P �(1) =
λs

µ
G�

s(1) +
λe

µ
G�

e(1) , (7)

P ��(1) =
λs

µ
G��

s (1) +
λe

µ
G��

e (1) + 2
λ2
s

µ2
(G�

s(1))
2

+2
λ2
e

µ2
(G�

e(1))
2 + 4

λsλe

µ2
G�

s(1)G
�
e(1) , (8)

where
G�

e(1) = q
λs

µ
G�

s(1) , (9)

G��
e (1) = q

λs

µ
G��

s (1) + 2q2
λ2
s

µ2
(G�

s(1))
2 . (10)

Note that the computations of formulas (7) and (8) do not
require inverting z-transforms.

4 Buffer occupancy
The analysis detailed in the previous sections allows us to

analyze the average buffer occupancy (11) and its standard
deviation (12):

∞
�

i=0

ipi = −P �(1) , (11)

�

�

�

�

∞
�

i=0

�

i−

∞
�

k=0

kpk

�2

pi =
�

P ��(1)(P ��(1)− 2P �(1)) .

(12)

Formulas (11) and (12) are checked by exchanging the order
of differentiation and summation in the definitions of P �(z)
and P ��(z), then taking z = 1. Figure 3 shows the behav-
iors of the average buffer occupancy (11) and its standard
deviation (12) for the class of forwarding strategies (5), by
varying the parameter q and the values µ, λe, λs. Note from
the figures that both expressions are linear in q. For illus-
trative purposes, we consider for the endogenous component
{gk,s} a model in which the conditions G�

s(1) = −1 and
G��

s (1) = 2 hold. An example of such a model is

{gk,s} = {δk,1} , (13)

whose z-transform is

Gs(z) = z−1 , (14)

i.e. all bulks are composed of 1 packet.
Similar curves can be obtained for more complex models.
Figure 4 shows the behaviors of the average buffer occu-

pancy (11) and its standard deviation (12) for a Poisson dis-
crete probability density

{gk,s} =

�

ake−a

k!

�

, (15)

(a > 0 is a parameter), whose z-transform is

Gs(z) = e−a(1−z−1) . (16)

where a = 3, G�
s(1) = −3 and G��

s (1) = 15.
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Figure 3: Average buffer occupancy and its standard devi-
ation for the class of forwarding strategies (5), by varying
the parameter q and considering a model for the endoge-
nous component {gk,s} for which one has G�

s(1) = −1 and
G��

s (1) = 2.
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Figure 4: Average buffer occupancy and its standard devia-
tion with a Poisson discrete probability density for the en-
dogenous component {gk,s} for which G�

s(1) = −3 and
G��

s (1) = 15.

5 Related Literature
An elegant model was proposed in [11] to analyze the de-

livery delay and its relative trade-offs with energy consump-
tion and buffer requirements in the so-called (p, q)-epidemic
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routing. In [11] p and q represent, respectively, the probabil-
ity that a node accepts a packet copy from another node when
none of them is the source and the probability that a node ac-
cepts a packet copy from the packet source node. With a
proper tuning of the values of p and q, (p, q)-epidemic rout-
ing models flooding, randomized flooding, or two-hops for-
warding. The model is based on a continuous-time Markov
chain, in which the state represents the number of copies of
a specific packet in the system.

In [15], the authors developed a mathematical framework
based on a Markov chain to get insights into the global con-
gestion behavior. Their analysis is greatly simplified by re-
placing some random variables in the model with their ex-
pected values.

Differently from [11] and [15], in this paper we have fo-
cused on the behavior of a network single node, estimating
both the discrete probability density of the size of its l-queue
and the exogenous component {gk,e} of {gk} for a class of
two-hop forwarding strategies. In [3], a similar analysis was
done for a different class of forwarding strategies used in
epidemic routing.

6 Conclusions
We have applied to a class of two-hop forwarding strate-

gies a relationship between the discrete probability densities
of bulk and queue sizes, which, under fixed traffic rates, de-
pends only on the traffic generated by single nodes towards
a specific destination. This allows to compute the average
buffer occupancy and its standard deviation for a specific
queue that contains traffic for a given destination within a
node, knowing only the discrete probability density of the
size of the bulks generated by that node towards the given
destination. This has immediate practical advantages, e.g.,
in congestion control. Although the results are formulated
for a single destination, they can be extended to the case of
traffic directed to multiple destinations with possibly differ-
ent generation rates.
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