
A Packet-Switching Satellite Emulator: A Proposal about Architecture and
Implementation

Mario Marchese, Marco Perrando
CNIT - Italian National Consortium for Telecommunications, University of Genoa Research Unit

Via Opera Pia 13, 16145, Genova (Italy).

Abstract - The paper contains a proposal about the design and
implementation of an on-board satellite packet-switching emulator. The
paper lists the requirements of the emulator that have been followed for
the design and that will represent the guidelines for the implementation of
the features not yet concluded. The characteristics of the emulator
architecture are described, including motivations, advantages and
drawbacks of the architectural choices. Particular attention is given to the
need of a having a real-time behavior and an efficient transport of the
information. Implementation details are reported. The support to the real-
time over the Linux operating system, on which the implementation is
performed, and the utilization of virtual tools to model the ACE emulator
interfaces and to map the address at the data link layer are of particular
interest. Neither the design or the implementation of the emulator is fully
concluded, but some interesting results, essentially about computation for
now, are already available and are reported.

I. INTRODUCTION

Satellite communications have many advantages with respect to
terrestrial communications. On the other hand, they amplify also many
problems already existing in terrestrial networks. Within this
framework, there is, on one hand, the opportunity of extending the use
of satellite networks and the need of developing new instruments and
schemes to improve the efficiency of the communications; on the
other hand, it is important to observe the difficulty to test the solutions.
A satellite system may be hardly studied on the field. It is expensive
and it often concerns only software components for earth stations.
Alternatives are necessary to investigate new systems and to evaluate
the performance. The first one is the analytical study. It is very
attractive but complex. It often requires simplifications and
approximations. The second alternative is simulation. The behavior of
a system is simulated via software. It is possible to by-pass the
complexity of real systems and solution not yet technically feasible
may be tested in view of future evolutions. The drawback is the need
of modeling. A model is not accurate enough to consider all the
aspects of a real system. A third alternative, which seems to
summarize most of the advantages of the solutions mentioned, is
emulation. Emulation is composed of hardware and software
components that behave as a real system. An emulator allows using
real traffic and it is similar to the real system also from the point of
view of the physical architecture.

The paper presents the design and implementation of an emulator
concerning on-board satellite packet switching. The work is part of a
wider Project called "Emulation of on-board satellite switching
systems" (ACE - ASI CNIT Emulator) [2], funded by the Italian
Space Agency (ASI) and carried on by the Italian National
Consortium for Telecommunications (CNIT). The project is aimed at
testing the efficiency of on-board circuit and packet switching. The

project will design and implement a circuit-switching and a packet-
switching emulator, of which this work is a part, to obtain a good
representation of a real system and to test solutions at any layer [1].

The paper is structured as follows. Section II contains the
requirements of the emulator. Section III shows the proposal
concerning the architecture and specifies the problems related to the
real-time issue and the transport of information. Some more details
about the implementation are reported in Section IV. Section V
contains the results and Section VI the conclusions.

II. REQUIREMENTS

Aim. The aim of the work is the emulation of a real satellite network
composed of earth stations and satellite devices including the satellite
itself.

Scope. The emulation should range from Geostationary (GEO) to
Low Earth Orbit (LEO) satellite systems. Earth stations may be
connected to external PCs implementing algorithms oriented to the
QoS (Quality of Service) at the network layer and new
implementations at the transport layer. It should be possible to test
different types of data link layers and different packet encapsulation
formats at the data link layer.

Modeling. The statistics about losses and delays should take into
account the real system and the status of the channels.

Transparency. The emulator should result as more transparent as
possible towards the external world; it means that it should be seen as
a real satellite device (e.g. a modem or a hardware card) by the
external users (e.g. Personal Computers (PCs), routers, switches).

Scalability. The complexity of the overall system should be, as much
as possible, independent of the enlargement of the emulated network.
Adding a new component to the system (e.g. a new earth station) may
increase the traffic and the computational load; but it should not affect
the architectural structure of the emulator.

Traffic class support. The emulator, in an extended future version,
should support different traffic classes at the data link layer.

Reliability. The results obtained by the emulator should be as close as
possible to the results obtained by a real satellite system that
implements the same packet switching strategy.

Architecture. It is not necessary that the internal architecture of the
emulator is a mirror of the real system from a physical and topological
level (e.g. not necessarily each hardware component of the emulator
should correspond to each device of the real system).

3026
0-7803-7400-2/02/$17.00 © 2002 IEEE

30263033

Simplicity. The emulator should result very simple from the point of
view of the computational load.

Real time. The tool should work under stringent time constraints; in
particular, at the interface with the external world.

Implementation. The implementation should use, as much as possible,
hardware and software material already implemented in other projects.

Interface. The hardware interface towards the external PCs should be
represented by devices (actually PCs, properly configured for this),
called Gateways (GTW). The communication between the layers
should be guaranteed by the use of exchanging Protocol Data Units
(PDUs), where the information coming from the external PCs is
encapsulated.

Core. The core of the emulator should be represented by a single tool,
which imposes losses, delay and jitters, following a statistics, to each
single PDU entering the emulator.

Transport of information. Each single PDU should be transported
from the input to the output gateway.

QoS (Quality of Service). The PCs that utilize the emulator should be
able to implement bandwidth reservation schemes and allocation
algorithms to guarantee QoS to the users.

III. ARCHITECTURE

A. Revision of a Real System
A satellite system is constituted by a certain number of ground

stations (each composed of a satellite modem that acts both at the
physical and at the data link layer) and a satellite that communicates
with the ground station over the satellite channel. The modem may be
an independent hardware entity connected to other units by means of a
cable or also a network adapter card plugged into a unit (e.g. the router
itself or a PC), as shown in Fig. 1. In practice, it can be though as a
data link layer of an overall protocol stack. For example, if an IP router
is directly connected to the modem, the IP layer of the router interacts
with the modem by sending and receiving traffic PDUs. Whenever a
satellite modem receives a PDU from the upper layers, its main
function is to send it towards the desired destination. On the other
hand, when a modem receives a PDU from the satellite network, it
must deliver it to the upper layers. The emulator should allow testing
various kind of protocols, switching systems, and whatever else, in
order to evaluate suitable solutions to be adopted. It is possible to
identify, in a real satellite system, the following main parts: a modem
with an interface towards the upper layers (namely the network layer);
a channel characterized by its own peculiarities; a data link protocol
over the satellite channel and a satellite with its on-board switching
capabilities.

B. General Architecture
The reference architecture of the emulator is shown in Fig. 2, along

with one possible system to be emulated enclosed in the cloud (a GEO
satellite system has been depicted in this case). Different units called
Gateways (GTW) operate as interface among the emulator and the
external PCs. Each GTW is composed of a PC with two network
interfaces: one towards the external world (a 10/100 Mbit/s Ethernet

card), the other towards the emulator. An Elaboration Unit (EU),
which has a powerful elaboration capacity, carries out most of the
emulation, as the decisions about each PDU. The interface towards the
external world concerns the GTWs; the loss, delay and any statistics of
each PDU regards the EU; the real transport of the information PDU
through the network concerns the input GTW and the output GTW.
The various components are connected via a 100 Mbits/s network,
completely isolated, by a full-duplex switch. In such way, the emulator
has an available bandwidth much wider than the real system to be
emulated, which should not overcome a maximum overall bandwidth
of 10/20 Mbits/s. In more detail, Fig. 3 shows how the different parts
of the real system (modem, data link protocol, channel and switching
system, as mentioned in the previous sub-section) are mapped onto the
different components of the emulator. As indicated in the
requirements, the architecture of the emulator is not exactly
correspondent to the real system. The earth station, identified by the
grey rectangle, is divided, in the emulator, into two parts (GTW and
EU). The network layer, the network interface towards the external
world and the interface between the network layer and the satellite
modem are contained in the Gateway (GTW). The other parts of the
modem (i.e. the data link layer, protocol and encapsulation), the
overall transmission characteristics (e.g. bit error ratio, channel fading,
lost and delayed packets), the on-board switching architecture as well
as the queuing strategies are contained in the Elaboration Unit (EU).

Physical

Data Link

IP

TCP

Application

Physical

Data Link

Physical

Data Link

IP IP

Router with satellite modem

Application
PC

Plugged -in
card

Fig. 1. Possible architecture of the real system - plugged-in card.

C. The interface
The interface between the modem at the ground station and the

protocols of the upper network layers has been implemented in the
emulator by creating a virtual device. It must be created on each of the
GTWs and appears to the user and to the operative system as a
network adapter (as a new Ethernet or Token Ring adapter). The
Linux kernel, where the emulator is implemented, gives the possibility
of creating such device by means of the tun/tap device [3] (see the
Section IV for details). It may be used in two possible ways: a point-
to-point device (namely the tun device, suitable for a direct link
between two PCs) and a broadcast, Ethernet-like device (namely the
tap device, useful to connect many PCs as if they were connected to
the same Local Area Network - LAN). The latter choice has been
adopted in the emulator because it is more similar to the real system
structure. By the use of the tap device, the GTWs are actually
connected by means of a virtual network that takes the PDUs and
transports them as if they were transmitted over the real satellite
system. After running the emulation software, a new network adapter

302730273034

(the tap device) is ready to be used as an Ethernet adapter, with its new
48-bit address. The new network adapter can be linked to the any
network protocol (such as IP, IPX, Novell). For example, if IP is used,
an IP address shall be configured over the tap device and static routes
or a routing daemon (e.g. routed) shall be started. Moreover, other IP
configuration tasks may be performed, exactly as the virtual device
was the real satellite modem, which acts at the data link layer.
Transparency is the real advantage of this solution. The approach
allows the emulator to behave exactly as a broadcast link that connects
more stations. It is not mandatory to use only one network layer
protocol; every layer 3 protocol suitable to work with an Ethernet
network adapter may be adopted.

EU

GTW

GTW GTW

GTW

Switch

PC / User

PC / User PC / User

PC / User

ACE
EMULATOR Station I Station 2 Station N

REAL SYSTEM
(example)

Switching on
board satellite

Fig. 2. Overall Emulator Architecture and Real System.

Gateway Gateway

Network Layer Network Layer

Eth0 Eth0Modem Modem
Elaboration Unit

SAT

Channel

Protocol

LEGENDA:

Gateway Elaboration Unit

The grey colour identifies
the components of the real
system to be emulated

Fig. 3. Emulator versus Real System.

D. Transport
The topic concerns the transport of information between the

different components that constitute the emulator (i.e. GTW and EU).
Two different kinds of information have been identified: the real traffic
(i.e. a packet containing the PDU), which the emulator transmits
between the Gateways, and the control information (namely a control
packet), which is related to the computation of the emulation results
(i.e. the "destiny" of each PDU). A traffic packet (e.g. pkt_X) is
directly sent to the proper output Gateway. A control packet (e.g.
ctrl_pkt_X), which contains concise information about the traffic
packet pkt_X, is sent to the EU. The EU performs most of the
emulation and, on the base of statistics, takes decision about the traffic
packet pkt_X. The EU reports them in ctrl_pkt_X and sends it the
output Gateway. The latter, once received pkt_X, must store it until the
arrival of ctrl_pkt_X. When the output GTW gets such information, it

can properly act on the PDU by discarding it, by delivering it to the
upper network layer at an exact time instant, by corrupting some bits
or by performing other actions as indicated in the control packet. The
same communication technique has been adopted for both types of
information. A new protocol (called ACE) has been created in order to
transport information. Due to the structure of the emulator (a set of
directly connected PCs), the ACE protocol is encapsulated into the
layer 2 PDU of the GTWs and of the EU. No routing is needed
because all PCs are directly connected among them. The approach
allows saving the amount of memory dedicated to contain the header
bytes concerning the upper protocol address (20 bytes for an IP
encapsulation). At the moment, Ethernet is the layer 2 protocol, but it
may be changed by a small adaptation of the source code. Another
advantage is the following. Once the traffic packet enters the ACE
emulator (through the virtual interface implemented by the tap device),
it does not pass through other protocol layers (e.g. IP) until it exits
from the emulator at the output Gateway (through the tap device). It
means that the ACE protocol is a layer 2 protocol. Traversing more
layers (i.e. encapsulating ACE at higher layers) could overload the
gateways because the traffic should pass twice through the network
layer. The first time as it would do in the real system (e.g. through an
external router or through the source PC) and the second time when it
is sent by the emulator software to the output GTW. In the working
hypothesis made, the emulator must perform only a simple mapping
between the layer 2 address of the virtual device (the tap device) and
the address of the physical device (e.g. the Ethernet card connecting
the units among them). The structure of an ACE packet is very simple:
the first byte carries the identification code of the packet, while the
other 1499 bytes carry the ACE packet header and payload. Only two
kinds of packets have been created for now: the traffic and control
packets, identified, respectively, with code identifier 1 and 2. If a PDU
cannot be entirely contained into an ACE traffic packet, part of it may
be sent to the destination through the control packet. In such a way
only two packets are necessary to emulate a single PDU. If the
payload size of the virtual device packet is larger than the physical
device packet, then more than one physical packet should be used to
send the PDU to the destination. Both the interfaces are Ethernet in the
present configuration of the emulator, so a virtual PDU of 1500 bytes
can be divided into two parts: the biggest one (nearly 1450 bytes) is
sent directly to the destination, while the remaining part flows through
the control packet. A comparison between the sequence of operations
necessary to deliver a PDU from the input and the output GTW in real
system and in the emulator is reported in Table I.

E. The Real-Time Issue
The emulation system should act under stringent time constraints at

the external interfaces. The interfaces should be real-time devices. The
emulator interfaces the upper layers of the protocol architecture in two
different ways: collection and deliver of a PDU. The software
component that carries out these tasks shall operate with precise
timing. Otherwise, the results obtained by the emulator could be
unreliable. For these reasons a real-time support has been inserted in
the GTWs only for the operations of collecting and delivering of a
PDU. Synchronization among all the emulator components is also
necessary. A tool called Network Time Protocol (NTP) is used in the
current implementation. On the other hand, it is not necessary that the
operations performed inside the EU act under strict time constraints

302830283035

but it is needed they provide the results in time to be applied to the real
traffic in transit. The aim may be reached by optimizing the emulator
code or by using more computing power in the Elaboration Unit.

TABLE I
Comparison between Real System and Emulator operations

Real System Emulator
The network layer sends the PDU to
the input modem specifying a
destination address

The network layer sends the PDU to the
virtual device specifying a destination
address

The input modem sends the PDU to
the output modem through the
satellite link

• the virtual device (contained in the
input GTW) collects the PDU

• the input GTW resolves the physical
address of the output GTW and sends
the PDU to the output GTW by using
the ACE protocol

• the output GTW receives the PDU,
stores it in a buffer and waits for an
ACE control packet from the EU

• the input GTW sends the ACE control
packet to the EU

• the EU receives the control packet,
performs the necessary operations and
sends another ACE control packet
containing the "destiny" of the PDU to
the output GTW

The out put modem delivers the
PDU (how and if the modem
receives it) to the upper network
layer

The output GTW receives the ACE
control packet and delivers the PDU to
the upper network layer or drops it, in
dependence of the indications contained
in the control packet

IV. IMPLEMENTATION

A. Virtual Devices
Concerning the virtual interface of each GTW to the upper layer,

the tun/tap tool [3] is used within the framework of the Linux
operating system. The tool is a file, from the point of view of a
programmer. The PDUs flow through the protocol layers via a simple
read/write operation over a file. Writing in the file corresponds to the
delivery of the PDUs to the upper layer; reading in the file means to
collect the PDUs that the upper layer sends to the virtual device. The
file is treated asynchronously. Delivering a PDU is an asynchronous
write operation; if the device is not ready, the real-time system tries
writing again at the next cycle. Also concerning the collecting
operation an asynchronous read operation is used, because, when the
emulator is ready to receive data, it is not necessarily true that the
upper layer has data to send. If the operation were not asynchronous
the overall program would stay blocked until the arrival of a packet
from the upper layer.

B. Real Time
The Linux operating system is not a real-time system. Two distinct

methods have been found to obtain a support to real-time in this
environment: use of the real time support by patching the Linux
kernel, which, originally, is a non-real time operating system (see [4],
for an example) and use of the device Real Time Clock (RTC) [5],
which is available in the mainboards of the PCs and usable through a
proper device of the Linux kernel. The former is probably the most

efficient and precise but it is more complex. The current version of
ACE is based on RTC. The real-time portion of the source code has
been isolated from the rest and a change towards a kernel-based
solution should be simple and quick. The RTC limit is a maximum
work frequency (to be set) of 8192 Hz. Such value has a period of 122
µs. It could create a problem with small and frequent packets.

C. Transport
To complete the discussion reported previously, Table II shows a C-

like structure of the traffic and control ACE packet headers.

TABLE II
Traffic and Control ACE Packet Headers

struct ACEptdhdr /*
TRAFFIC_PKT */
{
 ace_type_t pkt_type;
 unsigned int
serial_number;
 unsigned short
payload_size;
 unsigned short
station_id;
};

struct ACEcphdr /*
CONTROL_PKT */
{
 ace_type_t pkt_type;
 unsigned int
serial_number;
 unsigned short
station_id;
 unsigned short
pdu_total_size;
 unsigned short
payload_size;
 __time_t
enter_time_sec;
 __suseconds_t
enter_time_usec;
 __time_t exit_time_sec;
 __suseconds_t
exit_time_usec;
 ace_pdu_stat_t
pdu_flags;
};

V. RESULTS

This section shows measurements performed on the Gateway part
of the emulator that interacts with the upper network layer. This
measure is dedicated to test the accuracy of the developed code in
delivering the PDUs to the upper network layer at a given time instant.
The operation analyzed concerns the emulation phase when the output
GTW receives the ACE control packet and schedules the deliver of the
PDU to the upper layer. No meaningful performance difference has
been measured between the delivery operation and the collecting
operation. Only the former is considered in the following. The
difference between the instant of the real delivery and the scheduled
instant is the performance index. The eight different tests have been
composed as follows. The overall number of packets delivered in each
test is 1000. The dimension of the packets delivered to the upper
network layer is fixed at 1500 bytes (the Ethernet MTU). The
scheduled time interval between the delivery of two consecutive
packets is not time variant within the same test. The following values
for the time interval have been tested: 20µs, 200 µs, 2 ms, 20 ms. Two
different values of RTC have been used: a frequency of 4096 Hz and a
frequency of 8192 Hz (the maximum frequency settable on the RTC).

A frequency of 4096 Hz corresponds to an intervention of the CPU
(Central Processor Unit), which performs the real delivery,
approximately each 244 µs; a frequency of 8192 Hz, each 122 µs. The

302930293036

delay between the instant of the real delivery operation and the
scheduled instant and should range from 0 to 122 µs (or 244µs). The
mean value of the delay should be about 60 µs. A delay constantly
much higher than the upper bound means that the system is saturated
and the real time behavior cannot be controlled. Table III contains the
mean value of the mentioned delay for the different scheduled delivery
interval and RTC. The results obtained respect the expected values.
Only the case apparently more critical (20 µs) behaves better than
expected. The behavior is explained in Fig. 4 and in Fig. 5, where the
events occurring in the emulator for the 20 µs and the 200 µs case,
respectively, are reported over the time. In the first case, when the
CPU time needed to process and deliver a packet is over, it is probable
there is another packet scheduled to be served before the CPU returns
to the sleep status, waiting for the next RTC signal. On the contrary, in
the second case, when the service time is over, the process returns
immediately to the sleep status because there is no packet scheduled to
be sent. The overall effect, in the first case, is a drastic reduction of the
delay value. Fig. 6 contains the mentioned delay versus time in the
case of a RTC frequency of 8192 Hz and a scheduled delivery of 20
µs. The figure allows checking the real behavior over time and to
verify that not only the mean value is under the upper bound but that
each single packet has been delivered with a low delay. Similar
considerations may be done concerning the other tests (200 µs, 2 ms
and 20 ms), not reported. It is important to observe that the results
provided by adopting a RTC frequency of 4096 Hz are also satisfying
when they are compared with the mean delay of satellite systems. The
advantage of a lower RTC frequency is a CPU less loaded. Anyway,
the measures about the CPU load performed during the tests have
shown an acceptable load level even in the case of a RTC frequency of
8192 Hz.

TABLE III
Mean value of the delay

Mean delivery delay [µµs]Delivery interval
4096 Hz 8192 Hz

20 µs 57.656 25.559
200 µs 112.840 70.024

2 ms 130.460 69.850
20 ms 129.870 70.284

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Maximum delay: about 70µs

122µs

RTC signal

20µs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Packet scheduled deliver instant

Time

CPU busy on serving packet delivery

CPU in sleep status

Fig. 4. Emulator events - 20 µs.

1 2 3

Maximum delay: about 130 µs

122µs

RTC signal

200µs

1 2 3

Packet scheduled deliver instant

Time

CPU busy on searching and/or serving packet

CPU in sleep status

Fig. 5. Emulator events - 200 µs.

0

20

40

60

80

100

120

0 5000 10000 15000 20000

Time of the delivery [microseconds]

D
el

ay
 [

m
ic

ro
se

co
nd

s]

Fig. 6. Delay versus time, 8192 Hz, 20 µs.

VI. CONCLUSIONS

The paper has described the requirements and the architecture of an
emulator for packet-switching satellite systems. The emulator is
composed of units called Gateways (GTW). An Elaboration Unit
(EU), which has a powerful elaboration capacity, carries out most of
the emulation, as the decision about loss and delay of data. Different
parts of the real system are mapped onto the different components of
the emulator

The results have been dedicated to test the accuracy of the
developed code in exchanging data between the emulator and the
upper network layer. The operation concerns the emulation phase
when the output GTW receives the ACE control packet and schedules
the deliver of the PDU to the upper layer. The difference between the
real delivery and the scheduled instant is the performance index. The
delay is constantly under the upper bound expected and the behavior
of the overall system very satisfying.

ACKNOWLEDGEMENTS

This work has been supported by the Italian Space Agency (ASI)
under the contract "Emulation of on-board satellite switching
systems".

REFERENCES

[1] M. Allman, D. Glover, L. Sanchez, "Enhancing TCP Over
Satellite Channels using Standard Mechanism", IETF, RFC
2488, January 1999.

[2] G. Albertengo, T. Pecorella, M. Marchese, “The ACE
project: a Real Time Simulator for Satellite
Telecommunication Systems”, Proc. Sixth Ka-Band
Utilization Conference, June 2000, Cleveland, Ohio, pp.
571-576.

[3] Universal TUN/TAP Device Driver,
http://www.linuxhq.com/kernel/v2.4/doc/networking/tunta
p.txt.html.

[4] Linux Real Time Application Interface Information,
http://opensource.lineo.com/rtai.html.

[5] Real Time Clock Driver for Linux,
http://www.linuxhq.com/kernel/v2.0/doc/rtc.txt.html.

303030303037

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

