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Problem formulation

@ State of the CAC system: 2-dimensional vector n.

@ ni (k =1,2): number of connections from users of class k that have
been accepted and are currently in progress.

@ Inter-arrival times: exponentially distributed with mean values
1//\k(nk).

@ Holding times of accepted connections: independent and identically
distributed with mean 1/ .

@ The CAC system accepts or rejects a request of connection
according to a policy.
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Coordinate-convex sets and policies

Definition 1

A nonempty set Q C N3 is called coordinate-convex (c.c.) iff it has the
following property: for each n € Q with ni > 0 one hasn — e, € Q,
where ey is a 2-dimensional vector whose k-th component is 1 and the
other one is 0.

Definition 2

A c.c. policy with associated c.c. set Q) admits an arriving request of
connection iff the state process remains in S after admittance.
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Feasibility region

o Qpr C N3 such that given Quality of Service (QoS) constraints are
satisfied.

@ Complete sharing policy: admit a new call if and only if the call
state after its potential admittance is still within Qfg.

@ (Often) poor resource utilization.

@ Consider other admission policies.
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Optimization problem

Objective to be maximized:

JQ) =) (n-r)Pa(n). (1)

neQ

@ r: 2-dimensional vector whose component ry represents the
instantaneous revenue generated by any accepted connection of class
k that is still in progress.

@ Q C Qfr coordinate-convex.

@ Pq(n): steady-state probability that the CAC system is in state n
under the policy Q.
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Previous results for linearly-constrained feasibility
regions

o (Ross and Tsang '89): structural properties of the c.c. policies
maximizing the objective (1). Existence of

@ one (and only one) vertical threshold;
@ one (and only one) horizontal threshold;

@ both kinds of thresholds.

@ Structural results dependent on the value assumed by the revenue
ratio R := r/n.

@ They may not hold anymore for nonlinearly-constrained Qrg.
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Main objectives

@ Give some characterization of the optimal policies in CAC problems
with nonlinearly-constrained feasibility regions.

@ Obtain theoretical results that can be applied to

@ narrow the search for the (unknown) optimal c.c. policies;

@ improve given suboptimal c.c. policies.



On call admission control with nonlinearly constrained feasibility regions

Incrementally removable sets, incrementally admissible
sets, and corner points

Definition 3

A nonempty set S~ C Qg is incrementally removable with respect to
(IRq) iff S~ C Q and Q\ S~ is still a c.c. set.

Definition 4

A nonempty set ST C Qgr is incrementally admissible with respect to Q
(IAq) ifFSTNQ =0 and QU ST is still a c.c. set.

Definition 5

The tuple (o, 8) € Qer \ Q is a type-1 corner point for Q iff § > 1,
(a, 8 —1) € Q, and either « =0 or (a« — 1, 3) € Q; the tuple

(o, B) € Qer \ Q is a type-2 corner point for Q iffa > 1, (a« —1,58) € Q,
and either 3 =0 or (o, — 1) € Q.

v
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A criterion to improve suboptimal policies (1)

Proposition 1

Let (o, B) be a type-2 corner point for Q and suppose that there exist
n,m,p € Ny such that

ST ={la=1—-4,864+0):j=0,...,n,i=0,...,p} CQ, is IRq, and
St ={(a+s,8+i):s=0,...,m, i=0,...,p} CQrg, is lAq. Then
at least one of the following inequalities holds:

(i) J(QUST) > J(Q),

(i) J(Q\ S7) > J(Q).

o Idea of the proof: extending an argument used in (Ross and Tsang
'89, proof of Lemma 1).
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A criterion to improve suboptimal policies (II)

Proposition 2

Let (o, B) be a type-1 corner point for Q and suppose that there exist
n,m, p € Ny such that

ST ={la+i,—-1—4):i=0,...,p,j=0,...,n} CQ, is lAq, and
St={(a+i,f+5s):i=0,...,p,5s=0,...,m} C Qrg, is lAq. Then
at least one of the following inequalities holds:

(i) J(Q\ S7) > J(Q),

(i) J(QUST) > J(Q).

@ Obtained by reversing the roles of the two classes of users.
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A property of the corner points of any optimal policy

Proposition 3

The following holds.

(i) Let («,B3) be a type-2 corner point of Q for which Proposition 1
cannot be applied. Then I(a — 1) > ¥ (c).

(ii) Let (o, ) be a type-1 corner point of Q for which Proposition 2
cannot be applied. Then I2(3 — 1) > ().

I5}(ny) := max{k € Ny such that (n1, k) € Q},
1(np) := max{h € Ny such that (h, n,) € Q}.

@ Any policy Q* that cannot be further improved via Proposition 1 or
2 (in particular, any optimal policy) can have only the kind of corner
points described in Proposition 3.
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A structural property of any optimal policy (1)

Proposition 4

Let (o, 5;) and (ajy1, Bi+1) two consecutive corner points (if present) of
Q*. Then the intersection point («j+1 — 1, 3; — 1) between the vertical
line ny = «j11 — 1 and the horizontal line n, = B; — 1 either lies on
(0QeR) ™, or is outside Qpg.

@ |dea of the proof: the statement is equivalent to the pair of
inequalities

1273 — 1) < ajgr — 1,
(i — 1) < B; — 1.
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A structural property of any optimal policy (I1)
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@ Between any two successive corner points of Q* there is a nonempty
intersection between (9Q*)" and (0Qgr)" (dotted ellipse).
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Simulation results (I)

@ Poisson arrivals for both classes, A\; =6, A\, = 20, u; = up, = 0.1,
and n =n = 1.

@ Starting from the initial Q1, the final policy €24 is obtained by
applying Proposition 3 5 times to suitable corner points. The initial
value of the objective is J(21) = 66.4229, whereas the final value is
J(€26) = 72.9313, with an improvement of 9.8%.

@ Note that the final policy € cannot be further improved via
Propositions 1 or 2, and that it has the structural property stated in
Proposition 3.
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Simulation results (II)
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Conclusions

@ Some characterization of the optimal policies in CAC problems with
nonlinearly-constrained feasibility regions.

@ The theoretical results can be applied to

@ narrow the search for the (unknown) optimal c.c. policies;

@ improve given suboptimal c.c. policies.

@ Possible extension to K > 2 class of users: partition the set
{1,..., K} by using subsets of cardinality at most 2.
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A property of the corner points of any optimal policy (1)

@ Maximum number of type-1/type-2 connections allowed in Q when
we have already n, type-2/n; type-1 connections.

5} (1) := max{k € Ng such that (ny, k) € Q},
1 (np) := max{h € Ny such that (h, n,) € Q}.
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A property of the corner points of any optimal policy

)

Proposition 3

The following holds.

(i) Let («, 3) be a type-2 corner point of Q for which Proposition 1
cannot be applied. Then If(a — 1) > E¥*(a).
(ii) Let (o, B) be a type-1 corner point of Q2 for which Proposition 2
cannot be applied. Then I2(5 — 1) > 7 (3).

@ Any policy Q* that cannot be further improved via Proposition 1 or
2 (in particular, any optimal policy) can have only the kind of corner
points described in Proposition 3.
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Proof of Proposition 1

Suppose for now that neither J(QU ST) > J(Q) nor J(Q\ S7) > J(Q)
holds. Then,

D = G

which in turn implies J(ST) = H(ST)/G(ST) < H(Q)/G(Q) = J().
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Similarly, one obtains J(S7) > J(Q2), so J(S7) > J(ST). However,
computing J(S7) and J(ST), one obtains
JST)=rnxi(a—1—na—1)+ nx(8,6+ p),

J(ST) = nxi(a, a+ m) + nx(8, 8 + p), thus J(S7) < J(ST), but this
is a contradiction.

So we conclude that at least one between cases (i) and (ii) holds. [ |

H(-), G(-), xi(-,-) defined as in (Ross and Tsang '89).
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Proof of Proposition 3

We prove (i); for (i), similar arguments can be used. The two sets S
and S~ in Proposition 11 must be rectangles with the same height p.
The only value of p for which S~ is IRq is p = f/%Q(oz —1). The maximum
possible value of p for which ST is IAq is p = " («). So, if
19 (a — 1) > ¥*(«), Proposition 1 cannot be applied.

If, instead, /§}(a — 1) < /5" (c), then it is always possible to find sets S~
and ST that satisfy the assumptions of Proposition 1 (e.g.,
p=/(a—-1), n=m=0). [ ]
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Proof of Proposition 4

This is equivalent to the pair of inequalities
(5 1) < i — 1, (2)
B (e —1) < B — 1. (3)
Let us prove, e.g., that (2) holds. It follows by the definition of /5" (),
the monotonicity of /i (-), and Proposition 3 (i), that
G-1= B )2 B (0 - ) > B ans). (@)

Suppose now that the inequality IIQFR(ﬂ,- —1) > a1 — 1 opposite to (2)
holds, and let us show that this leads to a contradiction. Indeed, since
«j11 is an integer, one has

BB = 1) > g1 — 16 BR(8 = 1) > g -
This, combined with the (straightforward) property
ISR (¥ (B3; — 1)) > B; — 1 and the monotonicity of 5*(-), implies that

157 (aiiy1) > (i — 1, but this contradicts (4). So we conclude that (2)
holds. The proof of (3) is similar. ]



