## On call admission control with nonlinearly constrained feasibility regions

#### Marco Cello, Giorgio Gnecco, Mario Marchese, and Marcello Sanguineti

University of Genova

marco.cello@dist.unige.it, giorgio.gnecco@dist.unige.it, mario.marchese@unige.it, marcello@dist.unige.it

## Problem formulation

- State of the CAC system: 2-dimensional vector **n**.
  - n<sub>k</sub> (k = 1,2): number of connections from users of class k that have been accepted and are currently in progress.
- Inter-arrival times: exponentially distributed with mean values  $1/\lambda_k(n_k)$ .
- Holding times of accepted connections: independent and identically distributed with mean  $1/\mu_k$ .
- The CAC system accepts or rejects a request of connection according to a policy.

### Coordinate-convex sets and policies

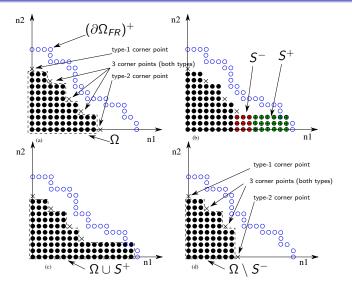
#### Definition 1

A nonempty set  $\Omega \subset \mathbb{N}_0^2$  is called coordinate-convex (c.c.) iff it has the following property: for each  $\mathbf{n} \in \Omega$  with  $n_k > 0$  one has  $\mathbf{n} - \mathbf{e}_k \in \Omega$ , where  $\mathbf{e}_k$  is a 2-dimensional vector whose k-th component is 1 and the other one is 0.

#### Definition 2

A c.c. policy with associated c.c. set  $\Omega$  admits an arriving request of connection iff the state process remains in  $\Omega$  after admittance.

#### Example



## Feasibility region

- $\Omega_{FR} \subset \mathbb{N}_0^2$  such that given Quality of Service (QoS) constraints are satisfied.
- Complete sharing policy: admit a new call if and only if the call state after its potential admittance is still within  $\Omega_{FR}$ .
  - (Often) poor resource utilization.
- Consider other admission policies.

## Optimization problem

Objective to be maximized:

$$J(\Omega) = \sum_{\mathbf{n}\in\Omega} (\mathbf{n}\cdot\mathbf{r}) P_{\Omega}(\mathbf{n}).$$
 (1)

- r: 2-dimensional vector whose component  $r_k$  represents the instantaneous revenue generated by any accepted connection of class k that is still in progress.
- $\Omega \subseteq \Omega_{FR}$  coordinate-convex.
- P<sub>Ω</sub>(n): steady-state probability that the CAC system is in state n under the policy Ω.

# Previous results for linearly-constrained feasibility regions

- (Ross and Tsang '89): structural properties of the c.c. policies maximizing the objective (1). Existence of
  - one (and only one) vertical threshold;
  - one (and only one) horizontal threshold;
  - both kinds of thresholds.
- Structural results dependent on the value assumed by the revenue ratio  $R := r_2/r_1$ .
- They may not hold anymore for nonlinearly-constrained  $\Omega_{FR}$ .

### Main objectives

- Give some characterization of the optimal policies in CAC problems with nonlinearly-constrained feasibility regions.
- Obtain theoretical results that can be applied to
  - narrow the search for the (unknown) optimal c.c. policies;
  - improve given suboptimal c.c. policies.

## Incrementally removable sets, incrementally admissible sets, and corner points

#### Definition 3

A nonempty set  $S^- \subset \Omega_{FR}$  is incrementally removable with respect to  $\Omega$  ( $IR_{\Omega}$ ) iff  $S^- \subset \Omega$  and  $\Omega \setminus S^-$  is still a c.c. set.

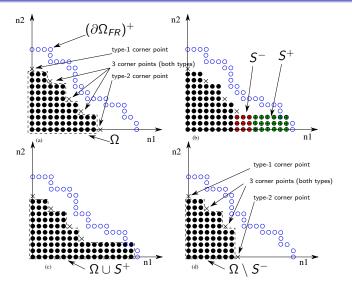
#### Definition 4

A nonempty set  $S^+ \subset \Omega_{FR}$  is incrementally admissible with respect to  $\Omega$ ( $IA_{\Omega}$ ) iff  $S^+ \cap \Omega = \emptyset$  and  $\Omega \cup S^+$  is still a c.c. set.

#### Definition 5

The tuple  $(\alpha, \beta) \in \Omega_{FR} \setminus \Omega$  is a type-1 corner point for  $\Omega$  iff  $\beta \geq 1$ ,  $(\alpha, \beta - 1) \in \Omega$ , and either  $\alpha = 0$  or  $(\alpha - 1, \beta) \in \Omega$ ; the tuple  $(\alpha, \beta) \in \Omega_{FR} \setminus \Omega$  is a type-2 corner point for  $\Omega$  iff  $\alpha \geq 1$ ,  $(\alpha - 1, \beta) \in \Omega$ , and either  $\beta = 0$  or  $(\alpha, \beta - 1) \in \Omega$ .

#### Example



## A criterion to improve suboptimal policies (I)

#### Proposition 1

Let  $(\alpha, \beta)$  be a type-2 corner point for  $\Omega$  and suppose that there exist  $n, m, p \in \mathbb{N}_0$  such that  $S^- := \{(\alpha - 1 - j, \beta + i) : j = 0, ..., n, i = 0, ..., p\} \subset \Omega$ , is  $IR_{\Omega}$ , and  $S^+ := \{(\alpha + s, \beta + i) : s = 0, ..., m, i = 0, ..., p\} \subset \Omega_{FR}$ , is  $IA_{\Omega}$ . Then at least one of the following inequalities holds: (i)  $J(\Omega \cup S^+) > J(\Omega)$ ; (ii)  $J(\Omega \setminus S^-) > J(\Omega)$ .

• Idea of the proof: extending an argument used in (Ross and Tsang '89, proof of Lemma 1).

## A criterion to improve suboptimal policies (II)

#### Proposition 2

Let  $(\alpha, \beta)$  be a type-1 corner point for  $\Omega$  and suppose that there exist  $n, m, p \in \mathbb{N}_0$  such that  $S^- := \{(\alpha + i, \beta - 1 - j) : i = 0, ..., p, j = 0, ..., n\} \subset \Omega$ , is  $IA_\Omega$ , and  $S^+ := \{(\alpha + i, \beta + s) : i = 0, ..., p, s = 0, ..., m\} \subset \Omega_{FR}$ , is  $IA_\Omega$ . Then at least one of the following inequalities holds: (i)  $J(\Omega \setminus S^-) > J(\Omega)$ ; (ii)  $J(\Omega \cup S^+) > J(\Omega)$ .

• Obtained by reversing the roles of the two classes of users.

### A property of the corner points of any optimal policy

#### Proposition 3

The following holds. (i) Let  $(\alpha, \beta)$  be a type-2 corner point of  $\Omega$  for which Proposition 1 cannot be applied. Then  $l_2^{\Omega}(\alpha - 1) > l_2^{\Omega_{FR}}(\alpha)$ . (ii) Let  $(\alpha, \beta)$  be a type-1 corner point of  $\Omega$  for which Proposition 2 cannot be applied. Then  $l_1^{\Omega}(\beta - 1) > l_1^{\Omega_{FR}}(\beta)$ .

$$egin{aligned} & f_2^\Omega(n_1) := \max\{k \in \mathbb{N}_0 ext{ such that } (n_1,k) \in \Omega\} \,, \ & f_1^\Omega(n_2) := \max\{h \in \mathbb{N}_0 ext{ such that } (h,n_2) \in \Omega\} \,. \end{aligned}$$

 Any policy Ω\* that cannot be further improved via Proposition 1 or 2 (in particular, any optimal policy) can have only the kind of corner points described in Proposition 3.

## A structural property of any optimal policy (I)

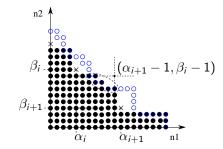
#### Proposition 4

Let  $(\alpha_i, \beta_i)$  and  $(\alpha_{i+1}, \beta_{i+1})$  two consecutive corner points (if present) of  $\Omega^*$ . Then the intersection point  $(\alpha_{i+1} - 1, \beta_i - 1)$  between the vertical line  $n_1 = \alpha_{i+1} - 1$  and the horizontal line  $n_2 = \beta_i - 1$  either lies on  $(\partial \Omega_{FR})^+$ , or is outside  $\Omega_{FR}$ .

• Idea of the proof: the statement is equivalent to the pair of inequalities

$$egin{split} & l_1^{\Omega_{FR}}(eta_i-1) \leq lpha_{i+1}-1\,, \ & l_2^{\Omega_{FR}}(lpha_{i+1}-1) \leq eta_i-1\,. \end{split}$$

## A structural property of any optimal policy (II)

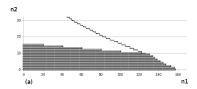


• Between any two successive corner points of  $\Omega^*$  there is a nonempty intersection between  $(\partial \Omega^*)^+$  and  $(\partial \Omega_{FR})^+$  (dotted ellipse).

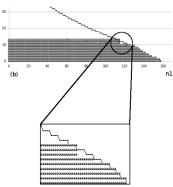
## Simulation results (I)

- Poisson arrivals for both classes,  $\lambda_1 = 6$ ,  $\lambda_2 = 20$ ,  $\mu_1 = \mu_2 = 0.1$ , and  $r_1 = r_2 = 1$ .
- Starting from the initial  $\Omega_1$ , the final policy  $\Omega_6$  is obtained by applying Proposition 3.5 times to suitable corner points. The initial value of the objective is  $J(\Omega_1) = 66.4229$ , whereas the final value is  $J(\Omega_6) = 72.9313$ , with an improvement of 9.8%.
- Note that the final policy  $\Omega_6$  cannot be further improved via Propositions 1 or 2, and that it has the structural property stated in Proposition 3.

## Simulation results (II)









- Some characterization of the optimal policies in CAC problems with nonlinearly-constrained feasibility regions.
- The theoretical results can be applied to
  - narrow the search for the (unknown) optimal c.c. policies;
  - improve given suboptimal c.c. policies.
- Possible extension to K > 2 class of users: partition the set  $\{1, \ldots, K\}$  by using subsets of cardinality at most 2.

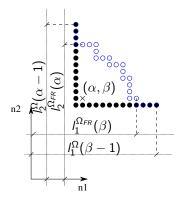
Thanks for the attention

#### Extra slides

#### A property of the corner points of any optimal policy (I)

 Maximum number of type-1/type-2 connections allowed in Ω when we have already n<sub>2</sub> type-2/n<sub>1</sub> type-1 connections.

$$egin{aligned} & h_2^\Omega(n_1) := \max\{k \in \mathbb{N}_0 ext{ such that } (n_1,k) \in \Omega\} \,, \ & h_1^\Omega(n_2) := \max\{h \in \mathbb{N}_0 ext{ such that } (h,n_2) \in \Omega\} \,. \end{aligned}$$



# A property of the corner points of any optimal policy (II)

#### Proposition 3

The following holds. (i) Let  $(\alpha, \beta)$  be a type-2 corner point of  $\Omega$  for which Proposition 1 cannot be applied. Then  $l_2^{\Omega}(\alpha - 1) > l_2^{\Omega_{FR}}(\alpha)$ . (ii) Let  $(\alpha, \beta)$  be a type-1 corner point of  $\Omega$  for which Proposition 2 cannot be applied. Then  $l_1^{\Omega}(\beta - 1) > l_1^{\Omega_{FR}}(\beta)$ .

 Any policy Ω\* that cannot be further improved via Proposition 1 or 2 (in particular, any optimal policy) can have only the kind of corner points described in Proposition 3.

#### Proof of Proposition 1

Suppose for now that neither  $J(\Omega \cup S^+) > J(\Omega)$  nor  $J(\Omega \setminus S^-) > J(\Omega)$  holds. Then,

$$J(\Omega\cup S^+)=rac{H(\Omega)+H(S^+)}{G(\Omega)+G(S^+)}\leq J(\Omega)=rac{H(\Omega)}{G(\Omega)},$$

which in turn implies  $J(S^+) = H(S^+)/G(S^+) \le H(\Omega)/G(\Omega) = J(\Omega)$ .

Similarly, one obtains  $J(S^-) \ge J(\Omega)$ , so  $J(S^-) \ge J(S^+)$ . However, computing  $J(S^-)$  and  $J(S^+)$ , one obtains  $J(S^-) = r_1 x_1(\alpha - 1 - n, \alpha - 1) + r_2 x_2(\beta, \beta + p)$ ,  $J(S^+) = r_1 x_1(\alpha, \alpha + m) + r_2 x_2(\beta, \beta + p)$ , thus  $J(S^-) < J(S^+)$ , but this is a contradiction.

So we conclude that at least one between cases (i) and (ii) holds.  $H(\cdot), G(\cdot), x_i(\cdot, \cdot)$  defined as in (Ross and Tsang '89).

#### Proof of Proposition 3

We prove (i); for (ii), similar arguments can be used. The two sets  $S^+$  and  $S^-$  in Proposition 11 must be rectangles with the same height p.

The only value of p for which  $S^-$  is  $IR_{\Omega}$  is  $p = l_2^{\Omega}(\alpha - 1)$ . The maximum possible value of p for which  $S^+$  is  $IA_{\Omega}$  is  $p = l_2^{\Omega_{FR}}(\alpha)$ . So, if  $l_2^{\Omega}(\alpha - 1) > l_2^{\Omega_{FR}}(\alpha)$ , Proposition 1 cannot be applied.

If, instead,  $l_2^{\Omega}(\alpha - 1) \leq l_2^{\Omega_{FR}}(\alpha)$ , then it is always possible to find sets  $S^$ and  $S^+$  that satisfy the assumptions of Proposition 1 (e.g.,  $p = l_2^{\Omega}(\alpha - 1), n = m = 0$ ).

#### Proof of Proposition 4

This is equivalent to the pair of inequalities

$${}^{\Omega_{FR}}_1(\beta_i-1) \le \alpha_{i+1}-1\,,\tag{2}$$

$$I_2^{\Omega_{FR}}(\alpha_{i+1}-1) \le \beta_i - 1.$$
(3)

Let us prove, e.g., that (2) holds. It follows by the definition of  $l_2^{\Omega^*}(\alpha_i)$ , the monotonicity of  $l_2^{\Omega^*}(\cdot)$ , and Proposition 3 (i), that

$$\beta_{i} - 1 = l_{2}^{\Omega^{*}}(\alpha_{i}) \ge l_{2}^{\Omega^{*}}(\alpha_{i+1} - 1) > l_{2}^{\Omega_{FR}}(\alpha_{i+1}).$$
(4)

Suppose now that the inequality  $l_1^{\Omega_{FR}}(\beta_i - 1) > \alpha_{i+1} - 1$  opposite to (2) holds, and let us show that this leads to a contradiction. Indeed, since  $\alpha_{i+1}$  is an integer, one has

$$I_1^{\Omega_{FR}}(\beta_i-1) > lpha_{i+1}-1 \Leftrightarrow I_1^{\Omega_{FR}}(\beta_i-1) \ge lpha_{i+1}.$$

This, combined with the (straightforward) property  $l_2^{\Omega_{FR}}(l_1^{\Omega_{FR}}(\beta_i - 1)) \ge \beta_i - 1$  and the monotonicity of  $l_2^{\Omega_{FR}}(\cdot)$ , implies that  $l_2^{\Omega_{FR}}(\alpha_{i+1}) \ge \beta_i - 1$ , but this contradicts (4). So we conclude that (2) holds. The proof of (3) is similar.