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Problem formulation

State of the CAC system: 2-dimensional vector n.

nk (k = 1, 2): number of connections from users of class k that have
been accepted and are currently in progress.

Inter-arrival times: exponentially distributed with mean values
1/λk(nk).

Holding times of accepted connections: independent and identically
distributed with mean 1/µk .

The CAC system accepts or rejects a request of connection
according to a policy.
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Coordinate-convex sets and policies

Definition 1

A nonempty set Ω ⊂ N
2
0 is called coordinate-convex (c.c.) iff it has the

following property: for each n ∈ Ω with nk > 0 one has n − ek ∈ Ω,
where ek is a 2-dimensional vector whose k-th component is 1 and the
other one is 0.

Definition 2

A c.c. policy with associated c.c. set Ω admits an arriving request of
connection iff the state process remains in Ω after admittance.
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Example
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Feasibility region

ΩFR ⊂ N
2
0 such that given Quality of Service (QoS) constraints are

satisfied.

Complete sharing policy: admit a new call if and only if the call
state after its potential admittance is still within ΩFR .

(Often) poor resource utilization.

Consider other admission policies.
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Optimization problem

Objective to be maximized:

J(Ω) =
∑

n∈Ω

(n · r)PΩ(n) . (1)

r: 2-dimensional vector whose component rk represents the
instantaneous revenue generated by any accepted connection of class
k that is still in progress.

Ω ⊆ ΩFR coordinate-convex.

PΩ(n): steady-state probability that the CAC system is in state n

under the policy Ω.
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Previous results for linearly-constrained feasibility
regions

(Ross and Tsang ’89): structural properties of the c.c. policies
maximizing the objective (1). Existence of

one (and only one) vertical threshold;

one (and only one) horizontal threshold;

both kinds of thresholds.

Structural results dependent on the value assumed by the revenue
ratio R := r2/r1.

They may not hold anymore for nonlinearly-constrained ΩFR .
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Main objectives

Give some characterization of the optimal policies in CAC problems
with nonlinearly-constrained feasibility regions.

Obtain theoretical results that can be applied to

narrow the search for the (unknown) optimal c.c. policies;

improve given suboptimal c.c. policies.
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Incrementally removable sets, incrementally admissible
sets, and corner points

Definition 3

A nonempty set S− ⊂ ΩFR is incrementally removable with respect to Ω
(IRΩ) iff S− ⊂ Ω and Ω \ S− is still a c.c. set.

Definition 4

A nonempty set S+ ⊂ ΩFR is incrementally admissible with respect to Ω
(IAΩ) iff S+ ∩ Ω = ∅ and Ω ∪ S+ is still a c.c. set.

Definition 5

The tuple (α, β) ∈ ΩFR \ Ω is a type-1 corner point for Ω iff β ≥ 1,
(α, β − 1) ∈ Ω, and either α = 0 or (α − 1, β) ∈ Ω; the tuple
(α, β) ∈ ΩFR \ Ω is a type-2 corner point for Ω iff α ≥ 1, (α − 1, β) ∈ Ω,
and either β = 0 or (α, β − 1) ∈ Ω.
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Example
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A criterion to improve suboptimal policies (I)

Proposition 1

Let (α, β) be a type-2 corner point for Ω and suppose that there exist
n,m, p ∈ N0 such that
S− := {(α − 1 − j , β + i) : j = 0, . . . , n, i = 0, . . . , p} ⊂ Ω, is IRΩ, and
S+ := {(α + s, β + i) : s = 0, . . . ,m, i = 0, . . . , p} ⊂ ΩFR , is IAΩ. Then
at least one of the following inequalities holds:
(i) J(Ω ∪ S+) > J(Ω);
(ii) J(Ω \ S−) > J(Ω).

Idea of the proof: extending an argument used in (Ross and Tsang
’89, proof of Lemma 1).
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A criterion to improve suboptimal policies (II)

Proposition 2

Let (α, β) be a type-1 corner point for Ω and suppose that there exist
n,m, p ∈ N0 such that
S− := {(α + i , β − 1 − j) : i = 0, . . . , p, j = 0, . . . , n} ⊂ Ω, is IAΩ, and
S+ := {(α + i , β + s) : i = 0, . . . , p, s = 0, . . . ,m} ⊂ ΩFR , is IAΩ. Then
at least one of the following inequalities holds:
(i) J(Ω \ S−) > J(Ω);
(ii) J(Ω ∪ S+) > J(Ω).

Obtained by reversing the roles of the two classes of users.
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A property of the corner points of any optimal policy

Proposition 3

The following holds.
(i) Let (α, β) be a type-2 corner point of Ω for which Proposition 1
cannot be applied. Then lΩ2 (α − 1) > lΩFR

2 (α).
(ii) Let (α, β) be a type-1 corner point of Ω for which Proposition 2
cannot be applied. Then lΩ1 (β − 1) > lΩFR

1 (β).

lΩ2 (n1) := max{k ∈ N0 such that (n1, k) ∈ Ω} ,

lΩ1 (n2) := max{h ∈ N0 such that (h, n2) ∈ Ω} .

Any policy Ω∗ that cannot be further improved via Proposition 1 or
2 (in particular, any optimal policy) can have only the kind of corner
points described in Proposition 3.
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A structural property of any optimal policy (I)

Proposition 4

Let (αi , βi ) and (αi+1, βi+1) two consecutive corner points (if present) of
Ω∗. Then the intersection point (αi+1 − 1, βi − 1) between the vertical
line n1 = αi+1 − 1 and the horizontal line n2 = βi − 1 either lies on
(∂ΩFR)+, or is outside ΩFR .

Idea of the proof: the statement is equivalent to the pair of
inequalities

lΩFR

1 (βi − 1) ≤ αi+1 − 1 ,

lΩFR

2 (αi+1 − 1) ≤ βi − 1 .
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A structural property of any optimal policy (II)

n2

n1

βi

βi+1

αi αi+1

(αi+1 − 1, βi − 1)

Between any two successive corner points of Ω∗ there is a nonempty
intersection between (∂Ω∗)+ and (∂ΩFR)+ (dotted ellipse).

15 / 25



On call admission control with nonlinearly constrained feasibility regions

Simulation results (I)

Poisson arrivals for both classes, λ1 = 6, λ2 = 20, µ1 = µ2 = 0.1,
and r1 = r2 = 1.

Starting from the initial Ω1, the final policy Ω6 is obtained by
applying Proposition 3 5 times to suitable corner points. The initial
value of the objective is J(Ω1) = 66.4229, whereas the final value is
J(Ω6) = 72.9313, with an improvement of 9.8%.

Note that the final policy Ω6 cannot be further improved via
Propositions 1 or 2, and that it has the structural property stated in
Proposition 3.
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Simulation results (II)
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Conclusions

Some characterization of the optimal policies in CAC problems with
nonlinearly-constrained feasibility regions.

The theoretical results can be applied to

narrow the search for the (unknown) optimal c.c. policies;

improve given suboptimal c.c. policies.

Possible extension to K > 2 class of users: partition the set
{1, . . . ,K} by using subsets of cardinality at most 2.
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A property of the corner points of any optimal policy (I)

Maximum number of type-1/type-2 connections allowed in Ω when
we have already n2 type-2/n1 type-1 connections.

lΩ2 (n1) := max{k ∈ N0 such that (n1, k) ∈ Ω} ,

lΩ1 (n2) := max{h ∈ N0 such that (h, n2) ∈ Ω} .
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A property of the corner points of any optimal policy
(II)

Proposition 3

The following holds.
(i) Let (α, β) be a type-2 corner point of Ω for which Proposition 1
cannot be applied. Then lΩ2 (α − 1) > lΩFR

2 (α).
(ii) Let (α, β) be a type-1 corner point of Ω for which Proposition 2
cannot be applied. Then lΩ1 (β − 1) > lΩFR

1 (β).

Any policy Ω∗ that cannot be further improved via Proposition 1 or
2 (in particular, any optimal policy) can have only the kind of corner
points described in Proposition 3.
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Proof of Proposition 1

Suppose for now that neither J(Ω ∪ S+) > J(Ω) nor J(Ω \ S−) > J(Ω)
holds. Then,

J(Ω ∪ S+) =
H(Ω) + H(S+)

G (Ω) + G (S+)
≤ J(Ω) =

H(Ω)

G (Ω)
,

which in turn implies J(S+) = H(S+)/G (S+) ≤ H(Ω)/G (Ω) = J(Ω).

Similarly, one obtains J(S−) ≥ J(Ω), so J(S−) ≥ J(S+). However,
computing J(S−) and J(S+), one obtains
J(S−) = r1x1(α − 1 − n, α − 1) + r2x2(β, β + p),
J(S+) = r1x1(α, α + m) + r2x2(β, β + p), thus J(S−) < J(S+), but this
is a contradiction.

So we conclude that at least one between cases (i) and (ii) holds. �

H(·), G (·), xi (·, ·) defined as in (Ross and Tsang ’89).
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Proof of Proposition 3

We prove (i); for (ii), similar arguments can be used. The two sets S+

and S− in Proposition 11 must be rectangles with the same height p.

The only value of p for which S− is IRΩ is p = lΩ2 (α − 1). The maximum
possible value of p for which S+ is IAΩ is p = lΩFR

2 (α). So, if

lΩ2 (α − 1) > lΩFR

2 (α), Proposition 1 cannot be applied.

If, instead, lΩ2 (α − 1) ≤ lΩFR

2 (α), then it is always possible to find sets S−

and S+ that satisfy the assumptions of Proposition 1 (e.g.,
p = lΩ2 (α − 1), n = m = 0). �
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Proof of Proposition 4

This is equivalent to the pair of inequalities

lΩFR

1 (βi − 1) ≤ αi+1 − 1 , (2)

lΩFR

2 (αi+1 − 1) ≤ βi − 1 . (3)

Let us prove, e.g., that (2) holds. It follows by the definition of lΩ
∗

2 (αi ),
the monotonicity of lΩ

∗

2 (·), and Proposition 3 (i), that

βi − 1 = lΩ
∗

2 (αi ) ≥ lΩ
∗

2 (αi+1 − 1) > lΩFR

2 (αi+1) . (4)

Suppose now that the inequality lΩFR

1 (βi − 1) > αi+1 − 1 opposite to (2)
holds, and let us show that this leads to a contradiction. Indeed, since
αi+1 is an integer, one has

lΩFR

1 (βi − 1) > αi+1 − 1 ⇔ lΩFR

1 (βi − 1) ≥ αi+1 .

This, combined with the (straightforward) property
lΩFR

2 (lΩFR

1 (βi − 1)) ≥ βi − 1 and the monotonicity of lΩFR

2 (·), implies that

lΩFR

2 (αi+1) ≥ βi − 1, but this contradicts (4). So we conclude that (2)
holds. The proof of (3) is similar. �
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