A stochastic knapsack problem with nonlinear capacity constraint

Marcello Sanguineti

joint work with

Marco Cello, Giorgio Gnecco, Mario Marchese

Department of Communications, Computer, and System Sciences (DIST) – University of Genoa Via Opera Pia, 13 – 16145 Genova (Italy)

{marcello, marco.cello, giorgio.gnecco, mario.marchese}@dist.unige.it

Overview

- Knapsack problem
 - Classical knapsack
 - Stochastic knapsack
 - Generalized stochastic knapsack
- Nonlinear constraints and feasibility regions
- Coordinate-convex policies and corner points
- Structural properties of the policies
- A method to improve coordinate-convex policies
- An algorithm of approximate solution
- Application to Call Admission Control in telecommunication networks
- Simulation results

Classical knapsack problem

- Knapsack of capacity C
- K classes of objects
- Each object of the class k = 1,..., K has a size b_k and an associated reward r_k
- The objects can be placed into the knapsack as long as the sum of their sizes does not exceed the capacity *C*
- Problem: place the objects inside the knapsack so as to maximize the total reward

A stochastic knapsack problem with nonlinear capacity constraint

Stochastic knapsack

• Objects belonging to each class become available randomly.

• Each accepted object has a random sojourn time.

Stochastic knapsack - Applications

- Accepting and blocking calls to a circuit-switched telecommunication system which supports a variety of traffic types (e.g., voice, video, fax, etc.).
- Parallel processing where jobs require a varying number of processors as a function of their class.
- Sharing memory where tasks from different classes require different amounts of memory.

• ...

Stochastic knapsack - Literature

Various models:

- K.W. Ross and D.H.K. Tsang: The stochastic knapsack problem. *IEEE Transactions on Communications*, 37(7):740–747, 1989.
- A. J. Kleywegt and J. D. Papastavrou: The dynamic and stochastic knapsack problem with random sized items. *Operations Research*, 49(1):26–41, 2001.
- B. C. Dean, M. X. Goemans, and J. Vondrak: Approximating the stochastic knapsack problem: The benefit of adaptivity. *Mathematics of Operations Research*, 33(4):945–964, 2008.

...

Stochastic knapsack - Our model

Choosing a model amounts at choosing, for each class k = 1, ..., K, the inter-arrival time of the objects and the sojourn time of the accepted objects.

- The inter-arrival time is exponentially distributed with mean value $1/\lambda_k(n_k)$.
- Every accepted object has a sojourn time independent from the sojourn times of the other objects, with mean value 1/μk.

• Constraint: $\sum_{k \in K} n_k b_k \leq C$

• n_k : number of objects of class k inside the knapsack.

- At the time of its arrival, each object is either accepted or rejected, according to a policy.
- If put into the knapsack, an object from class k generates revenue at a positive rate r_k.
- Problem: find a policy that maximizes the average revenue, by accepting or rejecting the arriving objects in dependence of the current state of the knapsack.

Remarks

- One extreme: the classical knapsack can be viewed as the limit case of our stochastic model, by setting the arrival rates for each class equal to infinity.
- The other extreme: when the arrival rates are "small", the optimal policy would consists in offering access to an object whenever sufficient volume is available (*complete sharing*).

Generalized stochastic knapsack - Our model

Linear constraint

$$\sum_{k\in K} n_k b_k \leq C$$

replaced by the nonlinear constraint

$$\sum_{k\in K}\beta_k(n_k)\leq C$$

 $\beta_k(\cdot)$: nonlinear nonnegative functions

Feasibility regions

The sets

$$\Omega_{FR} := \{ (n_1, \ldots, n_K) \in \mathbb{N}_0^K : \sum_{k \in K} n_k b_k \le C \}$$

in the linear case and

$$\Omega_{FR} := \{ (n_1, \ldots, n_K) \in \mathbb{N}_0^K : \sum_{k \in K} \beta_k(n_k) \le C \}$$

in the nonlinear case, are called *feasibility regions*.

• We consider the general case of nonlinearly- constrained feasibility regions.

Boundaries off the feasibility regions

Figure: The upper boundary $(\partial \Omega_{FR})^+$ of a feasibility region Ω_{FR} with 2 classes of objects in the case of (a) a linearly-constrained Ω_{FR} and (b) a nonlinearly-constrained Ω_{FR} .

Example - Call Admission Control (CAC) as stochastic knapsack

Context: telecommunication network

- Knapsack \leftrightarrow communication channel
- Object classes \leftrightarrow traffic types (e.g., voice, video, etc.)
- Objects ↔ requests of connections coming from different traffic types
- Objects volumes \leftrightarrow bandwidth requirements
- Capacity \leftrightarrow total available bandwidth
- Stochastic knapsack problem ↔ optimally accepting calls in order to maximize average revenues

- Each class of users has
 - a bandwidth requirement b_k
 - a distribution for its duration
- Typically, the linear constraint $\sum_{k \in K} n_k b_k \leq C$ arises via linearizations of the nonlinear constraint $\sum_{k \in K} \beta_k(n_k) \leq C$
 - *b_k*: effective bandwidth of class *k*
- The feasibility regions model subsets of the call space $\{(n_1, \ldots, n_K) \in \mathbb{N}_0^K\}$, where given *Quality of Service (QoS)* constraints are satisfied

Coordinate-convex policies

- **e**_k: *K*-dimensional vector whose *k*-th component is 1 and the other ones are 0
- $\mathbf{n} := (n_1, ..., n_k)$

Definition 1

A nonempty set $\Omega \subseteq \Omega_{FR} \subset \mathbb{N}_0^K$ is a coordinate-convex set (c.c. set) iff it has the following property: for every $\mathbf{n} \in \Omega$ with $n_k > 0$ one has $\mathbf{n} - \mathbf{e}_k \in \Omega$. A policy associated with a c.c. set Ω is called a coordinate-convex policy (c.c. policy). It admits an arriving object iff after its insertion one has $\mathbf{n} \in \Omega$.

 \bullet Correspondence between c.c. sets and c.c. policies \implies we use for both the symbol Ω

Examples of c.c. policies

Objective function

- At the time of its arrival, each object is either accepted or rejected, according to a c.c. policy
- The objective to be maximized in the set $\mathcal{P}(\Omega_{FR})$ of c.c. subsets of Ω_{FR} is given by

$$J(\Omega) := \sum_{\mathbf{n} \in \Omega} (\mathbf{n} \cdot \mathbf{r}) P_{\Omega}(\mathbf{n})$$

- $\mathbf{r} := (\mathbf{r}_1, \dots, \mathbf{r}_K)$
- *P*_Ω(**n**): steady-state probability that the current content of the knapsack is **n**
- As Ω is c.c., it can be shown that $P_{\Omega}(\mathbf{n})$ takes on the product-form

$$P_{\Omega}(\mathbf{n}) = \frac{\prod_{i=1}^{K} q_i(n_i)}{\sum_{\mathbf{n} \in \Omega} \prod_{i=1}^{K} q_i(n_i)}, \text{ where } q_i(n_i) := \frac{\prod_{j=0}^{n_i-1} \lambda_i(j)}{n_i! \mu_i^{n_i}}$$

- In general, finding optimal policies is a difficult combinatorial optimization task
- Due to the form of $P_{\Omega}(\mathbf{n})$, in general the objective function $J(\Omega) = \sum_{\mathbf{n} \in \Omega} (\mathbf{n} \cdot \mathbf{r}) P_{\Omega}(\mathbf{n})$ is nonlinear
- Further difficulty: given any two c.c. sets $\Omega_1, \Omega_2 \subseteq \Omega_{FR}$, in general

 $\Omega_1 \subseteq \Omega_2 \
eq \Rightarrow \ J(\Omega_1) \leq J(\Omega_2)$

Structural properties of the optimal policies

- The a-priori knowledge of structural properties of the (unknown) optimal policies
 - restricts the K-tuple $\mathbf{n} := (n_1, \dots, n_K)$ to suitable subsets of the feasibility region Ω_{FR}
 - useful to find the solutions or, at least, good suboptimal policies
- For two classes of objects and a linear constraint, structural properties of c.c. optimal policies were derived in
 - K.W. Ross and D.H.K. Tsang: The stochastic knapsack problem. *IEEE Trans. on Communications*, 37(7):740–747, 1989

Corner points

Definition 2

The tuple $(\alpha, \beta) \in \Omega_{FR} \setminus \Omega$ is a type-1 corner point for Ω iff $\beta \ge 1$, $(\alpha, \beta - 1) \in \Omega$, and either $\alpha = 0$ or $(\alpha - 1, \beta) \in \Omega$.

Definition 3

The tuple $(\alpha, \beta) \in \Omega_{FR} \setminus \Omega$ is a type-2 corner point for Ω iff $\alpha \ge 1$, $(\alpha - 1, \beta) \in \Omega$, and either $\beta = 0$ or $(\alpha, \beta - 1) \in \Omega$.

- We use the term "corner point" to refer to either a type-1 or a type-2 corner point.
- Ω c.c. \implies no two corner points can be on the same vertical or horizontal line.

Figure: Corner points

Incremental removability and incremental admissibility

Definition 4

A nonempty set $S^- \subset \Omega_{FR}$ is incrementally removable with respect to Ω (IR_{Ω}) iff $S^- \subset \Omega$ and $\Omega \setminus S^-$ is a c.c. set

Definition 5

A nonempty set $S^+ \subset \Omega_{FR}$ is incrementally admissible with respect to Ω (IA_{Ω}) iff $S^+ \cap \Omega = \emptyset$ and $\Omega \cup S^+$ is a c.c. set.

Improving a policy

Definition 6 A c.c. policy Ω_1 improves Ω_2 iff $J(\Omega_1) > J(\Omega_2)$

• Next proposition: criterion to establish if a c.c. policy is suboptimal and, if so, to improve it

Proposition 7

Let (α, β) be a type-2 corner point for Ω and suppose that there exist $n, m, p \in \mathbb{N}_0$ such that $S^- := \{(\alpha - 1 - j, \beta + i) : j = 0, ..., n, i = 0, ..., p\} \subset \Omega$, is IR_{Ω} , and $S^+ := \{(\alpha + s, \beta + i) : s = 0, ..., m, i = 0, ..., p\} \subset \Omega$, is IA_{Ω} . Then at least one of the following inequalities holds: (i) $J(\Omega \cup S^+) > J(\Omega)$; (ii) $J(\Omega \setminus S^-) > J(\Omega)$.

• Similar result for type-1 corner points.

Interpretation Proposition 7

The c.c. policy Ω is suboptimal: it can be improved by adding S^+ (Fig.(c)) or by removing S^- (Fig. (d)).

Figure: (a) An example of a corner point (α, β) for which neither Proposition 7 nor its version for type-1 corner points can be applied. (b) An example of a c.c. policy Ω^* that cannot be improved by applying Proposition 7 or its version for type-1 corner points.

- Given a type-2 corner point (α, β) , it may happen that Proposition 7 can be applied for several values of the pair (m, n).
- In the next proposition, we write S⁺(m) and S⁻(n) to make the dependencies on m and n explicit.

Choosing of *m* and *n*

Proposition 8

Let the assumptions of Proposition 7 hold for m = n = 0 and some p.

- (i) Let $\bar{m} \ge 0$ be the maximum value of m for which $S^+(m)$ is IA_{Ω} . If $J(\Omega \cup S^+(0)) > J(\Omega)$, then $J(\Omega \cup S^+(m))$ is an increasing function of m for $m \in \{0, ..., \bar{m}\}$.
- (ii) Let $\bar{n} \ge 0$ be the maximum value of n for which $S^-(n)$ is IR_{Ω} . If $J(\Omega \setminus S^-(0)) > J(\Omega)$, then $J(\Omega \setminus S^-(n))$ is an increasing function of n for $n \in \{0, ..., \bar{n}\}$.
 - Interpretation: the best "greedy" choices for *m* and *n* consist in taking them as large as possible: this guarantees the best local improvement of the current policy.

A greedy algorithm to improve a c.c. policy

For a c.c. policy Ω , let

 $L_2(\Omega_j)$ = set of type-2 corner points for which the assumptions of Proposition 7 hold for m = n = 0 and some p.

• Propositions 7 and 8 suggest the following algorithm.

Algorithm 9

- Choose an initial c.c. policy Ω_0 ;
- While $L_2(\Omega_j) \neq \emptyset$ let $\Omega_{j+1} \in \operatorname{argmax}\{\Omega_j \cup S^+(\bar{m}), \Omega_j \setminus S^-(\bar{n}) : (\alpha, \beta) \in L_2(\Omega_j)\};$

Return the current policy Ω_j.

- Step 2: among the type-2 corner points of the current policy Ω_j, select the one that guarantees the largest local improvement of Ω_j.
- Such an improvement is obtained either by adding the set $S^+(\bar{m})$ to Ω_j or by removing the set $S^-(\bar{n})$.

- Algorithm 9 terminates after a finite number of iterations.
- At each step the policy that guarantees the best local improvement of the objective is selected.
- Algorithm 9 provides a c.c. policy that may not be optimal.

A property of optimal c.c. policies

• Let Ω^o denote any optimal c.c. policy (or its associated c.c. set).

Proposition 10

 Ω° has a nonempty intersection with the upper boundary $(\partial \Omega_{FR})^+$ of the feasibility region.

A property of corner points of optimal c.c. policies

- $l_2^{\Omega}(n_1) := \max\{k \in \mathbb{N}_0 \text{ such that } (n_1, k) \in \Omega\}$: maximum number of type-2 connections allowed in Ω when we have already n_1 type-1 connections.
- $l_1^{\Omega}(n_2) := \max\{h \in \mathbb{N}_0 \text{ such that } (h, n_2) \in \Omega\}$: maximum number of type-1 connections allowed in Ω when we have already n_2 type-2 connections.
- The functions $l_i^{\Omega}(\cdot)$ are nonincreasing.
- Let $n_{1,\max} := l_1^{\Omega_{FR}}(0)$ and $n_{2,\max} := l_2^{\Omega_{FR}}(0)$.

Proposition 11

(i) If (α, β) is a type-2 corner point for Ω° , then for some $j = 1, ..., n_{2,\max}$

 $\alpha = l_1^{\Omega_{FR}}(j) + 1.$

(ii) If (α, β) is a type-1 corner point for Ω° , then for some $j = 1, ..., n_{1,\max}$

$$\beta = l_2^{\Omega_{FR}}(j) + 1.$$

• Proposition 11 extends to nonlinearly-constrained feasibility regions a property proved in Ross & Tsang for a linear constraint.

Interpretation of Proposition 11

- The feasibility region can be decomposed as the union of a finite number *n*_{rect} of disjoint rectangles with decreasing heights.
- Corner points of Ω^o: to be searched among the vertices of a grid determined by such rectangles.

Figure: Decomposition of the feasibility region into disjoint rectangles. Crosses = potential locations of corner points of an optimal c.c. policy.

How to exploit the properties stated by Propositions 10 and 11

- Narrowing the search for the optimal c.c. policies to the ones that satisfy the necessary conditions stated in Propositions 10 and 11.
- E.g., for the feasibility region depicted in Figure 4, the next table shows how the number of candidate optimal c.c. policies drastically decreases.

All c.c. policies	> 352.716
C.c. policies satisfying Proposition 11	41
C.c. policies satisfying Propositions 10 and 11	28

Example - Call Admission Control (CAC) as stochastic knapsack

Context: telecommunication network

- Knapsack \leftrightarrow communication channel
- Object classes \leftrightarrow traffic types (e.g., voice, video, etc.)
- Objects ↔ requests of connections coming from different traffic types (user types)
- Objects volumes \leftrightarrow bandwidth requirements
- Capacity \leftrightarrow total available bandwidth
- Stochastic knapsack problem ↔ optimally accepting calls in order to maximize average revenues

- Each class of users has
 - a bandwidth requirement b_k
 - a distribution for its duration
- Typically, the linear constraint $\sum_{k \in K} n_k b_k \leq C$ arises via linearizations of the nonlinear constraint $\sum_{k \in K} \beta_k(n_k) \leq C$
 - $\beta_k(\cdot)$: effective bandwidth of class k
- The feasibility regions model subsets of the call space $\{(n_1, \ldots, n_K) \in \mathbb{N}_0^K\}$, where given *Quality of Service (QoS)* constraints are satisfied.

Simulation scenario

- Two classes of traffic: voice call traffic (class 1) and data traffic (class 2)
- Same per-call revenues of the two classes: $r_1 = r_2 = 1$.
- Class 1 and class 2 modeled by Poisson arrivals and exponential call duration
- Class-1 traffic: on average 20 calls per time unit e.g., per minute $(\lambda_1 = 20)$, with an average holding time of 3 time units per call $(\mu_1 = 1/3)$.
- Class-2 traffic: $\lambda_2 = 10$ and $\mu_2 = 1/20$.

Poisson processes

- A Poisson process is a sequence of events "randomly spaced in time".
- Examples
 - Customers arriving to a bank
 - Geiger counter clicks
 - Packets arriving to a buffer
- The rate λ of a Poisson process is the average number of events per unit time (over a "long time").

• In a Poisson process, the probability of *N* arrivals in *t* units of time is given by

$$P_N(t) = \frac{(\lambda t)^N}{N!} e^{-\lambda t}$$

For two intervals (s₁, s₂) and (s₃, s₄) such that s₁ < s₂ ≤ s₃ < s₄, the number of arrivals in (s₁, s₂) is independent of the number of arrivals in (s₃, s₄).

- Feasibility region Ω_{FR} used in the simulations: has a nonlinear upper boundary that models QoS constraints. It is the one used, e.g., in
 - T. Javidi and D. Teneketzis: An approach to connection admission control in single-hop multiservice wireless networks with QoS requirements. *IEEE Transactions on Vehicular Technology*, vol. 52, pp. 1110–1124, 2003 [Figure 3].
 - M. Marchese: *QoS Over Heterogeneous Networks* Wiley, 2007 [pp. 46-49].

Simulation results

- Initial c.c. policy Ω_1 .
- C.c. policy Ω_2 obtained by four iterations of Algorithm 9.

• At each iteration

- the corner point to which Proposition 8 has been applied has been chosen according to Step 2 of Algorithm 9
- the values of *m* or *n* have been chosen "optimally" according to Proposition 8 (i.e., $m = \overline{m}$ and $n = \overline{n}$).
- Initial value of the objective: $J(\Omega_1) = 66.4229$
- Final value: $J(\Omega_2) = 74.9198$, with an improvement of 12.8%.

- The coordinate-convex policy Ω_2 cannot be further improved via Proposition 7
- Its corner points (0, 16) and (106, 11) satisfy Proposition 11

Figure: (a) initial c.c. policy Ω_1 ; (b) final c.c. policy Ω_2 .

Conclusions

- A model of stochastic generalized knapsack
- Coordinate-convex policies
- Improving policies
- A greedy algorithm
- Application to Call Admission Control
- Simulation results for 2 classes of traffic