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Classical knapsack problem

Knapsack of capacity C

K classes of objects

Each object of the class k = 1, . . . ,K has a size bk and an
associated reward rk

The objects can be placed into the knapsack as long as the sum of
their sizes does not exceed the capacity C

Problem: place the objects inside the knapsack so as to maximize
the total reward
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Stochastic knapsack

Objects belonging to each class become available randomly.

Each accepted object has a random sojourn time.
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Stochastic knapsack - Applications

Accepting and blocking calls to a circuit-switched
telecommunication system which supports a variety of traffic types
(e.g., voice, video, fax, etc.).

Parallel processing where jobs require a varying number of processors
as a function of their class.

Sharing memory where tasks from different classes require different
amounts of memory.

...
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Stochastic knapsack - Literature

Various models:

K.W. Ross and D.H.K. Tsang: The stochastic knapsack problem.
IEEE Transactions on Communications, 37(7):740–747, 1989.

A. J. Kleywegt and J. D. Papastavrou: The dynamic and stochastic
knapsack problem with random sized items. Operations Research,
49(1):26–41, 2001.

B. C. Dean, M. X. Goemans, and J. Vondrak: Approximating the
stochastic knapsack problem: The benefit of adaptivity.
Mathematics of Operations Research, 33(4):945–964, 2008.

...
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Stochastic knapsack - Our model

Choosing a model amounts at choosing, for each class k = 1, . . . ,K , the
inter-arrival time of the objects and the sojourn time of the accepted
objects.

The inter-arrival time is exponentially distributed with mean value
1/λk(nk).

Every accepted object has a sojourn time independent from the
sojourn times of the other objects, with mean value 1/µk .
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Constraint:
∑

k∈K nkbk ≤ C

nk : number of objects of class k inside the knapsack.

At the time of its arrival, each object is either accepted or rejected,
according to a policy.

If put into the knapsack, an object from class k generates revenue at
a positive rate rk .

Problem: find a policy that maximizes the average revenue, by
accepting or rejecting the arriving objects in dependence of the
current state of the knapsack.
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Remarks

One extreme: the classical knapsack can be viewed as the limit case
of our stochastic model, by setting the arrival rates for each class
equal to infinity.

The other extreme: when the arrival rates are “small”, the optimal
policy would consists in offering access to an object whenever
sufficient volume is available (complete sharing).
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Generalized stochastic knapsack - Our model

Linear constraint

∑

k∈K

nkbk ≤ C

replaced by the nonlinear constraint

∑

k∈K

βk(nk ) ≤ C

βk(·): nonlinear nonnegative functions
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Feasibility regions

The sets

ΩFR := {(n1, . . . , nK ) ∈ N
K
0 :

∑

k∈K

nkbk ≤ C}

in the linear case and

ΩFR := {(n1, . . . , nK ) ∈ N
K
0 :

∑

k∈K

βk(nk ) ≤ C

in the nonlinear case, are called feasibility regions.

We consider the general case of nonlinearly- constrained feasibility
regions.
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Boundaries off the feasibility regions

(a) (b) n1n1

n2n2

(∂ΩFR)
+

(∂ΩFR)
+

Figure: The upper boundary (∂ΩFR)
+ of a feasibility region ΩFR with 2 classes

of objects in the case of (a) a linearly-constrained ΩFR and (b) a
nonlinearly-constrained ΩFR .
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Example - Call Admission Control (CAC) as stochastic
knapsack

Context: telecommunication network

Knapsack ↔ communication channel

Object classes ↔ traffic types (e.g., voice, video, etc.)

Objects ↔ requests of connections coming from different traffic
types

Objects volumes ↔ bandwidth requirements

Capacity ↔ total available bandwidth

Stochastic knapsack problem ↔ optimally accepting calls in
order to maximize average revenues
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Each class of users has

a bandwidth requirement bk
a distribution for its duration

Typically, the linear constraint
∑

k∈K nkbk ≤ C arises via
linearizations of the nonlinear constraint

∑
k∈K βk(nk ) ≤ C

bk : effective bandwidth of class k

The feasibility regions model subsets of the call space
{(n1, . . . , nK ) ∈ N

K
0 }, where given Quality of Service (QoS)

constraints are satisfied
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Coordinate-convex policies

ek : K -dimensional vector whose k-th component is 1 and the
other ones are 0

n := (n1, . . . , nk)

Definition 1

A nonempty set Ω ⊆ ΩFR ⊂ N
K
0 is a coordinate-convex set (c.c. set) iff it

has the following property: for every n ∈ Ω with nk > 0 one has
n− ek ∈ Ω. A policy associated with a c.c. set Ω is called a
coordinate-convex policy (c.c. policy). It admits an arriving object iff
after its insertion one has n ∈ Ω.

Correspondence between c.c. sets and c.c. policies =⇒ we use
for both the symbol Ω
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Examples of c.c. policies
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(c)
n1

n2

Ω
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Objective function

At the time of its arrival, each object is either accepted or rejected,
according to a c.c. policy

The objective to be maximized in the set P(ΩFR) of c.c. subsets of
ΩFR is given by

J(Ω) :=
∑

n∈Ω

(n · r)PΩ(n)

r := (r1, . . . , rK)

PΩ(n): steady-state probability that the current content of the
knapsack is n

As Ω is c.c., it can be shown that PΩ(n) takes on the product-form

PΩ(n) =

∏K

i=1 qi (ni )∑
n∈Ω

∏K

i=1 qi (ni)
, where qi (ni) :=

∏ni−1
j=0 λi (j)

ni !µ
ni
i
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In general, finding optimal policies is a difficult combinatorial
optimization task

Due to the form of PΩ(n), in general the objective function
J(Ω) =

∑
n∈Ω (n · r)PΩ(n) is nonlinear

Further difficulty: given any two c.c. sets Ω1,Ω2 ⊆ ΩFR , in general

Ω1 ⊆ Ω2 6=⇒ J(Ω1) ≤ J(Ω2)
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Structural properties of the optimal policies

The a-priori knowledge of structural properties of the (unknown)
optimal policies

restricts the K -tuple n := (n1, . . . , nK ) to suitable subsets of the
feasibility region ΩFR

useful to find the solutions or, at least, good suboptimal policies

For two classes of objects and a linear constraint, structural
properties of c.c. optimal policies were derived in

K.W. Ross and D.H.K. Tsang: The stochastic knapsack problem.
IEEE Trans. on Communications, 37(7):740–747, 1989
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Corner points

Definition 2

The tuple (α, β) ∈ ΩFR \ Ω is a type-1 corner point for Ω iff β ≥ 1,
(α, β − 1) ∈ Ω, and either α = 0 or (α− 1, β) ∈ Ω.

Definition 3

The tuple (α, β) ∈ ΩFR \ Ω is a type-2 corner point for Ω iff α ≥ 1,
(α− 1, β) ∈ Ω, and either β = 0 or (α, β − 1) ∈ Ω.

We use the term “corner point” to refer to either a type-1 or a
type-2 corner point.

Ω c.c. =⇒ no two corner points can be on the same vertical or
horizontal line.
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(a) n1

n2

Ω

(∂ΩFR)
+

type-1 corner point

type-2 corner point

3 corner points (both types)

Figure: Corner points
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Incremental removability and incremental admissibility

Definition 4

A nonempty set S− ⊂ ΩFR is incrementally removable with respect to Ω
(IRΩ) iff S− ⊂ Ω and Ω \ S− is a c.c. set

Definition 5

A nonempty set S+ ⊂ ΩFR is incrementally admissible with respect to Ω
(IAΩ) iff S+ ∩ Ω = ∅ and Ω ∪ S+ is a c.c. set.
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Improving a policy

Definition 6

A c.c. policy Ω1 improves Ω2 iff J(Ω1) > J(Ω2)

Next proposition: criterion to establish if a c.c. policy is suboptimal
and, if so, to improve it
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Proposition 7

Let (α, β) be a type-2 corner point for Ω and suppose that there exist
n,m, p ∈ N0 such that
S− := {(α− 1− j , β + i) : j = 0, . . . , n, i = 0, . . . , p} ⊂ Ω, is IRΩ, and
S+ := {(α+ s, β + i) : s = 0, . . . ,m, i = 0, . . . , p} ⊂ Ω, is IAΩ. Then at
least one of the following inequalities holds:

(i) J(Ω ∪ S+) > J(Ω);

(ii) J(Ω \ S−) > J(Ω).

Similar result for type-1 corner points.
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Interpretation Proposition 7

The c.c. policy Ω is suboptimal: it can be improved by adding S+ (Fig.(c)) or

by removing S− (Fig. (d)).

(d)(c)

(a)
(b) n1

n1 n1

n1

n2

n2 n2

n2

Ω

(∂ΩFR)
+

Ω ∪ S+ Ω \ S−

type-1 corner point

type-1 corner point

type-2 corner point

type-2 corner point

3 corner points (both types)

2 corner points (both types)

S+
S−
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n2

n1

lΩ 2
(α

−
1
)

lΩ
F
R

2
(α

)

lΩ1 (β − 1)

l
ΩFR
1 (β)

(α, β)

(a)

n2

n1

βi

βi+1

αi αi+1

(αi+1 − 1, βi − 1)

(b)

Figure: (a) An example of a corner point (α, β) for which neither Proposition 7
nor its version for type-1 corner points can be applied. (b) An example of a c.c.
policy Ω∗ that cannot be improved by applying Proposition 7 or its version for
type-1 corner points.
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Given a type-2 corner point (α, β), it may happen that Proposition 7
can be applied for several values of the pair (m, n).

In the next proposition, we write S+(m) and S−(n) to make the
dependencies on m and n explicit.
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Choosing of m and n

Proposition 8

Let the assumptions of Proposition 7 hold for m = n = 0 and some p.
(i) Let m̄ ≥ 0 be the maximum value of m for which S+(m) is IAΩ. If

J(Ω ∪ S+(0)) > J(Ω), then J(Ω ∪ S+(m)) is an increasing function
of m for m ∈ {0, . . . , m̄}.

(ii) Let n̄ ≥ 0 be the maximum value of n for which S−(n) is IRΩ. If
J(Ω \ S−(0)) > J(Ω), then J(Ω \ S−(n)) is an increasing function
of n for n ∈ {0, . . . , n̄}.

Interpretation: the best “greedy” choices for m and n consist in
taking them as large as possible: this guarantees the best local
improvement of the current policy.
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A greedy algorithm to improve a c.c. policy

For a c.c. policy Ω, let

L2(Ωj) = set of type-2 corner points for which the assumptions of
Proposition 7 hold for m = n = 0 and some p.

Propositions 7 and 8 suggest the following algorithm.

Algorithm 9

1 Choose an initial c.c. policy Ω0;

2 While L2(Ωj) 6= ∅
let Ωj+1 ∈ argmax{Ωj ∪ S+(m̄),Ωj \ S

−(n̄) : (α, β) ∈ L2(Ωj)};

3 Return the current policy Ωj .

Step 2: among the type-2 corner points of the current policy Ωj ,
select the one that guarantees the largest local improvement of Ωj .

Such an improvement is obtained either by adding the set S+(m̄) to
Ωj or by removing the set S−(n̄).
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Algorithm 9 terminates after a finite number of iterations.

At each step the policy that guarantees the best local improvement
of the objective is selected.

Algorithm 9 provides a c.c. policy that may not be optimal.
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A property of optimal c.c. policies

Let Ωo denote any optimal c.c. policy (or its associated c.c. set).

Proposition 10

Ωo has a nonempty intersection with the upper boundary (∂ΩFR)
+ of the

feasibility region.
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A property of corner points of optimal c.c. policies

lΩ2 (n1) := max{k ∈ N0 such that (n1, k) ∈ Ω} : maximum number
of type-2 connections allowed in Ω when we have already n1 type-1
connections.

lΩ1 (n2) := max{h ∈ N0 such that (h, n2) ∈ Ω} : maximum number
of type-1 connections allowed in Ω when we have already n2 type-2
connections.

The functions lΩi (·) are nonincreasing.

Let n1,max := lΩFR

1 (0) and n2,max := lΩFR

2 (0).
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Proposition 11

(i) If (α, β) is a type-2 corner point for Ωo , then for some
j = 1, . . . , n2,max

α = lΩFR

1 (j) + 1 .

(ii) If (α, β) is a type-1 corner point for Ωo , then for some
j = 1, . . . , n1,max

β = lΩFR

2 (j) + 1 .

Proposition 11 extends to nonlinearly-constrained feasibility regions
a property proved in Ross & Tsang for a linear constraint.
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Interpretation of Proposition 11

The feasibility region can be decomposed as the union of a finite
number nrect of disjoint rectangles with decreasing heights.
Corner points of Ωo : to be searched among the vertices of a grid
determined by such rectangles.

n1

n2
nrect = 4

Figure: Decomposition of the feasibility region into disjoint rectangles. Crosses
= potential locations of corner points of an optimal c.c. policy.
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How to exploit the properties stated by Propositions 10

and 11

Narrowing the search for the optimal c.c. policies to the ones that
satisfy the necessary conditions stated in Propositions 10 and 11.

E.g., for the feasibility region depicted in Figure 4, the next table
shows how the number of candidate optimal c.c. policies drastically
decreases.

All c.c. policies > 352.716
C.c. policies satisfying Proposition 11 41

C.c. policies satisfying Propositions 10 and 11 28

37 / 48



A stochastic knapsack problem with nonlinear capacity constraint

Example - Call Admission Control (CAC) as stochastic
knapsack

Context: telecommunication network

Knapsack ↔ communication channel

Object classes ↔ traffic types (e.g., voice, video, etc.)

Objects ↔ requests of connections coming from different traffic
types (user types)

Objects volumes ↔ bandwidth requirements

Capacity ↔ total available bandwidth

Stochastic knapsack problem ↔ optimally accepting calls in
order to maximize average revenues
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Each class of users has

a bandwidth requirement bk
a distribution for its duration

Typically, the linear constraint
∑

k∈K nkbk ≤ C arises via
linearizations of the nonlinear constraint

∑
k∈K βk(nk ) ≤ C

βk (·): effective bandwidth of class k

The feasibility regions model subsets of the call space
{(n1, . . . , nK ) ∈ N

K
0 }, where given Quality of Service (QoS)

constraints are satisfied.
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Simulation scenario

Two classes of traffic: voice call traffic (class 1) and data traffic
(class 2)

Same per-call revenues of the two classes: r1 = r2 = 1.

Class 1 and class 2 modeled by Poisson arrivals and exponential call
duration

Class-1 traffic: on average 20 calls per time unit - e.g., per minute
(λ1 = 20), with an average holding time of 3 time units per call
(µ1 = 1/3).

Class-2 traffic: λ2 = 10 and µ2 = 1/20.
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Poisson processes

A Poisson process is a sequence of events “randomly spaced in
time”.

Examples

Customers arriving to a bank
Geiger counter clicks
Packets arriving to a buffer

The rate λ of a Poisson process is the average number of events per
unit time (over a “long time”).
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In a Poisson process, the probability of N arrivals in t units of time
is given by

PN(t) =
(λ t)N

N!
e−λ t

For two intervals (s1, s2) and (s3, s4) such that s1 < s2 ≤ s3 < s4, the
number of arrivals in (s1, s2) is independent of the number of arrivals
in (s3, s4).
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Feasibility region ΩFR used in the simulations: has a nonlinear upper
boundary that models QoS constraints. It is the one used, e.g., in

T. Javidi and D. Teneketzis: An approach to connection admission
control in single-hop multiservice wireless networks with QoS
requirements. IEEE Transactions on Vehicular Technology, vol. 52,
pp. 1110–1124, 2003 [Figure 3].

M. Marchese: QoS Over Heterogeneous Networks Wiley, 2007 [pp.
46-49].
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Simulation results

Initial c.c. policy Ω1.
C.c. policy Ω2 obtained by four iterations of Algorithm 9.
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At each iteration

the corner point to which Proposition 8 has been applied has been
chosen according to Step 2 of Algorithm 9

the values of m or n have been chosen “optimally” according to
Proposition 8 (i.e., m = m̄ and n = n̄).

Initial value of the objective: J(Ω1) = 66.4229

Final value: J(Ω2) = 74.9198, with an improvement of 12.8%.
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The coordinate-convex policy Ω2 cannot be further improved via
Proposition 7

Its corner points (0, 16) and (106, 11) satisfy Proposition 11
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Ω1
Ω2

Figure: (a) initial c.c. policy Ω1; (b) final c.c. policy Ω2.
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Conclusions

A model of stochastic generalized knapsack

Coordinate-convex policies

Improving policies

A greedy algorithm

Application to Call Admission Control

Simulation results for 2 classes of traffic
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