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Overview

@ Knapsack problem
o Classical knapsack
o Stochastic knapsack

o Generalized stochastic knapsack

Nonlinear constraints and feasibility regions

[

[

Coordinate-convex policies and corner points

@ Structural properties of the policies

¢

A method to improve coordinate-convex policies

[

An algorithm of approximate solution

[

Application to Call Admission Control in telecommunication
networks

Simulation results

¢

N
N
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Classical knapsack problem

@ Knapsack of capacity C

[

K classes of objects

[

Each object of the class k =1,..., K has a size by and an
associated reward ry

The objects can be placed into the knapsack as long as the sum of
their sizes does not exceed the capacity C

¢

Problem: place the objects inside the knapsack so as to maximize
the total reward

¢
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Stochastic knapsack

@ Objects belonging to each class become available randomly.

@ Each accepted object has a random sojourn time.



A stochastic knapsack problem with nonlinear capacity constraint

Stochastic knapsack - Applications

@ Accepting and blocking calls to a circuit-switched
telecommunication system which supports a variety of traffic types
(e.g., voice, video, fax, etc.).

@ Parallel processing where jobs require a varying number of processors
as a function of their class.

@ Sharing memory where tasks from different classes require different
amounts of memory.
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Stochastic knapsack - Literature

Various models:

@ K.W. Ross and D.H.K. Tsang: The stochastic knapsack problem.
IEEE Transactions on Communications, 37(7):740-747, 1989.

o A. J. Kleywegt and J. D. Papastavrou: The dynamic and stochastic
knapsack problem with random sized items. Operations Research,
49(1):26-41, 2001.

@ B. C. Dean, M. X. Goemans, and J. Vondrak: Approximating the
stochastic knapsack problem: The benefit of adaptivity.
Mathematics of Operations Research, 33(4):945-964, 2008.
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Stochastic knapsack - Our model

Choosing a model amounts at choosing, for each class k =1,..., K, the
inter-arrival time of the objects and the sojourn time of the accepted
objects.

@ The inter-arrival time is exponentially distributed with mean value
l/Ak(nk).

@ Every accepted object has a sojourn time independent from the
sojourn times of the other objects, with mean value 1/ .

~
N
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@ Constraint: > kek Mbx < C

@ ny: number of objects of class k inside the knapsack.

@ At the time of its arrival, each object is either accepted or rejected,
according to a policy.

@ If put into the knapsack, an object from class k generates revenue at
a positive rate rg.

@ Problem: find a policy that maximizes the average revenue, by
accepting or rejecting the arriving objects in dependence of the
current state of the knapsack.

8/48



A stochastic knapsack problem with nonlinear capacity constraint

Remarks

@ One extreme: the classical knapsack can be viewed as the limit case
of our stochastic model, by setting the arrival rates for each class
equal to infinity.

@ The other extreme: when the arrival rates are “small”, the optimal
policy would consists in offering access to an object whenever
sufficient volume is available (complete sharing).
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Generalized stochastic knapsack - Our model

Linear constraint
Z nkbk < C
keK

replaced by the nonlinear constraint

> Bu(m) < C

kek

Bk(-): nonlinear nonnegative functions
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Feasibility regions

@ The sets

QFR = {(n17...7nK) EN{; : anbk < C}
keK

in the linear case and

QFr = {(n17...7nK) € NS( : Zﬁk(nk) <C
keK

in the nonlinear case, are called feasibility regions.

@ We consider the general case of nonlinearly- constrained feasibility
regions.
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Boundaries off the feasibility regions

Figure: The upper boundary (9Qeg)™ of a feasibility region Qrr with 2 classes
of objects in the case of (a) a linearly-constrained Qeg and (b) a
nonlinearly-constrained Qrg.
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Example - Call Admission Control (CAC) as stochastic
knapsack

Context: telecommunication network
@ Knapsack <> communication channel

@ Object classes <« traffic types (e.g., voice, video, etc.)

[

Objects ¢ requests of connections coming from different traffic
types

[

Objects volumes <« bandwidth requirements

[

Capacity < total available bandwidth

¢

Stochastic knapsack problem <« optimally accepting calls in
order to maximize average revenues
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@ Each class of users has

@ a bandwidth requirement by
@ a distribution for its duration

@ Typically, the linear constraint >, . nkby < C  arises via
linearizations of the nonlinear constraint >, Bk(nk) < C

o by: effective bandwidth of class k
@ The feasibility regions model subsets of the call space

{(m,...,nk) € NK}, where given Quality of Service (QoS)
constraints are satisfied
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Coordinate-convex policies

@ ex:  K-dimensional vector whose k-th component is 1 and the
other ones are 0

o n = (n,...,nk)

Definition 1

A nonempty set Q C Qpgp C NE is a coordinate-convex set (c.c. set) iff it
has the following property: for every n € Q with n, > 0 one has

n— e, € Q. A policy associated with a c.c. set § is called a
coordinate-convex policy (c.c. policy). It admits an arriving object iff
after its insertion one has n € Q.

@ Correspondence between c.c. sets and c.c. policies =— we use
for both the symbol Q2
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if this point belongs
to the policy
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Examples of c.c. policies

T 1
n (b) Example policy Q1 n

n2

-

; 1
(c) Example policy Q2 n (d) Example policy Q3
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Objective function

@ At the time of its arrival, each object is either accepted or rejected,
according to a c.c. policy
@ The objective to be maximized in the set P(Qgg) of c.c. subsets of
QFrr is given by
J(Q) = (n-r)Pg(n)
neQ
or = (r,...,rg)
@ Pq(n): steady-state probability that the current content of the

knapsack is n
@ As Q is c.c., it can be shown that Pq(n) takes on the product-form

T2, ai(m) T175%" Ail)

P = , where g;i(n;) :=
WSl am "

nilp
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@ In general, finding optimal policies is a difficult combinatorial
optimization task

@ Due to the form of Pq(n), in general the objective function
J(Q2) = > ,cq (n-r)Pq(n) is nonlinear

@ Further difficulty: given any two c.c. sets Q1,8 C Qpg, in general

M CQ A= J(u) <J(Q2)

20/48



A stochastic knapsack problem with nonlinear capacity constraint

Structural properties of the optimal policies

@ The a-priori knowledge of structural properties of the (unknown)
optimal policies

@ restricts the K-tuple n := (n1,..., nk) to suitable subsets of the
feasibility region Qrr
o useful to find the solutions or, at least, good suboptimal policies

@ For two classes of objects and a linear constraint, structural
properties of c.c. optimal policies were derived in

@ K.W. Ross and D.H.K. Tsang: The stochastic knapsack problem.
IEEE Trans. on Communications, 37(7):740-747, 1989
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Corner points

Definition 2

The tuple (o, B) € Qer \ Q is a type-1 corner point for Q iff § > 1,
(a, 8 —1) € Q, and either « =0 or (a« — 1, 8) € Q.

Definition 3

The tuple (c, B) € Qer \ Q is a type-2 corner point for Q iff a« > 1,
(a—1,8) € Q, and either 3 =0 or (o, 3 — 1) € Q.

@ We use the term “corner point” to refer to either a type-1 or a
type-2 corner point.

@ QQ c.c. = no two corner points can be on the same vertical or
horizontal line.
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Figure: Corner points
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Incremental removability and incremental admissibility

Definition 4

A nonempty set S~ C Qg is incrementally removable with respect to
(IRq) iff S~ CQ and Q\ S~ isac.c. set

Definition 5

A nonempty set ST C Qg is incrementally admissible with respect to Q
(IAq) iffSTNQ=0and QU ST is a cc. set.
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Improving a policy

Definition 6
A c.c. policy Qy improves Qy iff J(Q1) > J(Q2) J

@ Next proposition: criterion to establish if a c.c. policy is suboptimal
and, if so, to improve it
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Proposition 7

Let (o, B) be a type-2 corner point for Q and suppose that there exist
n,m, p € Ny such that
ST ={la=1—4,864+0):j=0,....,n,i=0,...,p} CQ, is IRq, and
St ={(a+s,8+i):s=0,....m i=0,...,p} CQ, is lAq. Then at
least one of the following inequalities holds:

() JQUST) > J(Q);

(i) J(Q\S7) > J(Q).

@ Similar result for type-1 corner points.
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Interpretation Proposition 7

The c.c. policy Q is suboptimal: it can be improved by adding S* (Fig.(c)) or
by removing S~ (Fig. (d)).

nz nz

(092FR)*™
type-1 corner point

3 corner points (both

type-2 corner point

n

type-1 corner point
2 corner points (both types)

type-2 corner point
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n2

.
009 n2
F\%\&&\\\
28 —1) | Bt -
x
(2)

Figure: (a) An example of a corner point («, 8) for which neither Proposition 7
nor its version for type-1 corner points can be applied. (b) An example of a c.c.
policy Q* that cannot be improved by applying Proposition 7 or its version for
type-1 corner points.
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@ Given a type-2 corner point («, ), it may happen that Proposition 7
can be applied for several values of the pair (m, n).

@ In the next proposition, we write S™(m) and S~ (n) to make the
dependencies on m and n explicit.
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Choosing of m and n

Proposition 8
Let the assumptions of Proposition 7 hold for m = n = 0 and some p.

(i) Let m > 0 be the maximum value of m for which S*(m) is IAq. If
J(QU ST(0)) > J(Q), then J(QU St (m)) is an increasing function
of m for m € {0,...,m}.

(i) Let n > 0 be the maximum value of n for which S~(n) is IRq. If
J(Q\ S7(0)) > J(Q), then J(2\ S~ (n)) is an increasing function
of n forn e {0,...,n}.

Interpretation: the best “greedy” choices for m and n consist in
taking them as large as possible: this guarantees the best local

improvement of the current policy.
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A greedy algorithm to improve a c.c. policy

For a c.c. policy Q, let

L»(€2;) = set of type-2 corner points for which the assumptions of
Proposition 7 hold for m = n = 0 and some p.

@ Propositions 7 and 8 suggest the following algorithm.
Algorithm 9

@ Choose an initial c.c. policy

Q@ While Ly(%;) # 0
let Qi1 € argmax{Q; UST(m),Q; \ S™(7) : (o, B) € L2()};

© Return the current policy ;.

@ Step 2: among the type-2 corner points of the current policy €;,
select the one that guarantees the largest local improvement of ;.

@ Such an improvement is obtained either by adding the set S*(m) to
Q; or by removing the set 5~ (n).
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@ Algorithm 9 terminates after a finite number of iterations.

@ At each step the policy that guarantees the best local improvement
of the objective is selected.

@ Algorithm 9 provides a c.c. policy that may not be optimal.
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A property of optimal c.c. policies

o Let Q° denote any optimal c.c. policy (or its associated c.c. set).

Proposition 10

Q° has a nonempty intersection with the upper boundary (0Q0g)™ of the
feasibility region.
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A property of corner points of optimal c.c. policies

@ /§}(ny) := max{k € Ng such that (n, k) € Q}: maximum number
of type-2 connections allowed in € when we have already n; type-1
connections.

@ /{}(ny) := max{h € Ny such that (h,n;) € Q} : maximum number
of type-1 connections allowed in € when we have already n; type-2
connections.

@ The functions /{(-) are nonincreasing.

o Let N pmax == /?FR(O) and Ny max = /3”?(0).
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Proposition 11

(i) If (o, B) is a type-2 corner point for Q°, then for some
.j: 17"';”2,111&)(

o= IR+ 1.

(ii) If («, B) is a type-1 corner point for Q°, then for some
j: 1,...,n1,max

8= I87(j)+1.

@ Proposition 11 extends to nonlinearly-constrained feasibility regions
a property proved in Ross & Tsang for a linear constraint.
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Interpretation of Proposition 11

@ The feasibility region can be decomposed as the union of a finite
number nyec; of disjoint rectangles with decreasing heights.

@ Corner points of Q°: to be searched among the vertices of a grid
determined by such rectangles.

n
Npect = 4

................

m

Figure: Decomposition of the feasibility region into disjoint rectangles. Crosses

= potential locations of corner points of an optimal c.c. policy.
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How to exploit the properties stated by Propositions 10
and 11

@ Narrowing the search for the optimal c.c. policies to the ones that
satisfy the necessary conditions stated in Propositions 10 and 11.

@ E.g., for the feasibility region depicted in Figure 4, the next table
shows how the number of candidate optimal c.c. policies drastically

decreases.
All c.c. policies > 352.716
C.c. policies satisfying Proposition 11 41
C.c. policies satisfying Propositions 10 and 11 28
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Example - Call Admission Control (CAC) as stochastic
knapsack

Context: telecommunication network
@ Knapsack <> communication channel

@ Object classes <« traffic types (e.g., voice, video, etc.)

[

Objects ¢ requests of connections coming from different traffic
types (user types)

[

Objects volumes <« bandwidth requirements

[

Capacity < total available bandwidth

¢

Stochastic knapsack problem <« optimally accepting calls in
order to maximize average revenues
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@ Each class of users has

@ a bandwidth requirement by
@ a distribution for its duration

@ Typically, the linear constraint ZkeK neby < C arises via
linearizations of the nonlinear constraint >, Bk(nk) < C

@ Bk(+): effective bandwidth of class k
@ The feasibility regions model subsets of the call space

{(m,...,nk) € NK}, where given Quality of Service (QoS)
constraints are satisfied.
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Simulation scenario

@ Two classes of traffic: voice call traffic (class 1) and data traffic
(class 2)

@ Same per-call revenues of the two classes: n =1 = 1.

@ Class 1 and class 2 modeled by Poisson arrivals and exponential call
duration

@ Class-1 traffic: on average 20 calls per time unit - e.g., per minute
(A1 = 20), with an average holding time of 3 time units per call

(11 = 1/3)
@ Class-2 traffic: A = 10 and pp = 1/20.
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Poisson processes

@ A Poisson process is a sequence of events “randomly spaced in
time”.
@ Examples

o Customers arriving to a bank
o Geiger counter clicks
o Packets arriving to a buffer

@ The rate A of a Poisson process is the average number of events per
unit time (over a “long time").
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@ In a Poisson process, the probability of N arrivals in t units of time
is given by

@ For two intervals (s1, s2) and (s3, s4) such that s < s, < 53 < 54, the
number of arrivals in (s1, s;) is independent of the number of arrivals
in (s3,54).
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@ Feasibility region Qgr used in the simulations: has a nonlinear upper
boundary that models QoS constraints. It is the one used, e.g., in

o T. Javidi and D. Teneketzis: An approach to connection admission
control in single-hop multiservice wireless networks with QoS
requirements. |EEE Transactions on Vehicular Technology, vol. 52,
pp. 1110-1124, 2003 [Figure 3].

@ M. Marchese: QoS Over Heterogeneous Networks Wiley, 2007 [pp.
46-49].
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Simulation results

@ Initial c.c. policy €2;.

@ C.c. policy 2, obtained by four iterations of Algorithm 9.
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@ At each iteration

@ the corner point to which Proposition 8 has been applied has been
chosen according to Step 2 of Algorithm 9

o the values of m or n have been chosen “optimally” according to
Proposition 8 (i.e., m = i and n = 7).

@ Initial value of the objective: J(;) = 66.4229

o Final value: J(€,) = 74.9198, with an improvement of 12.8%.
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@ The coordinate-convex policy €2, cannot be further improved via
Proposition 7
@ Its corner points (0,16) and (106, 11) satisfy Proposition 11
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Figure: (a) initial c.c. policy Q1; (b) final c.c. policy Q.
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Conclusions

[

A model of stochastic generalized knapsack

@ Coordinate-convex policies

¢

Improving policies

¢

A greedy algorithm

[

Application to Call Admission Control

Simulation results for 2 classes of traffic

[



